Your Life as Planet Earth

A new way to understand the story of the Earth, its climate and our origins

Citations

First edition ebook (kindle)

 

 indicates changed since publication

Geological time scale:

International Stratigraphic Chart 2012, International Commission on Stratigraphy, Available at: http://www.stratigraphy.org/index.php/ics-chart-timescale

Global chronostratigraphical correlation table for the last 2.7 million years, v 2010, International Commission on Stratigraphy, Available at: http://www.stratigraphy.org/index.php/ics-chart-timescale

Bibliography

1.

Connelly, J. N. et al., The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk. Science 338, 651-655 (2012), http://www.sciencemag.org/content/338/6107/651.abstract.

2.

Rudge, J. F., Kleine, T. & Bourdon, B., Broad bounds on Earth's accretion and core formation constrained by geochemical models. Nature Geoscience 3, 439-443 (2010), http://www.nature.com/ngeo/journal/v3/n6/full/ngeo872.html.

3.

CSIRO, Star Formation (2006), http://outreach.atnf.csiro.au/education/senior/​astrophysics/stellarevolution_formation.html.

4.

Kramers, J. D., Hierarchical Earth accretion and the Hadean Eon. Journal of the Geological Society, London 164, 3-17 (2007), http://jgs.lyellcollection.org/content/164/1/3.abstract.

5.

Abramov, O. & Mojzsis, S. J., Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459, 419-422 (2009), http://www.nature.com/nature/journal/v459/n7245/abs/nature08015.html.

6.

Russel, S. S., The Formation of the Solar System. Journal of the Geological Society 164, 481-492 (2007), http://jgs.lyellcollection.org/content/164/3/481.short.

7.

Elkins-Tanton, L. T., Formation of early water oceans on rocky planets. Astrophysics and Space Science 332, 359-364 (2011), http://link.springer.com/article/10.1007/s10509-010-0535-3.

8.

Halliday, A. N., A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences 366, 4163-4181 (2008), http://rsta.royalsocietypublishing.org/content/366/1883/4163.full.

9.

Canup, R. M., Accretion of the Earth. Philosophical Transactions of the Royal Society A mathematical, Physical and Engineering Sciences 366, 4061-4075 (2008), http://rsta.royalsocietypublishing.org/content/366/1883/4061.full.pdf.

10.

Jutzi, M. & Asphaug, E., Forming the lunar farside highlands by accretion of a companion moon. Nature 476, 69–72 (2011), http://www.nature.com/nature/journal/v476/n7358/full/nature10289.html.

11.

Sleep, N. H., The Hadean-Archaean Environment. Cold Spring Harbor Perspectives in Biology (2010), http://www.cshperspectives.com/content/2/6/a002527.short.

12.

Moore, W. B. & Webb, A. A. G., Heat-pipe Earth. Nature 501, 501–505 (2013), http://www.nature.com/nature/journal/v501/n7468/full/nature12473.html.

13.

Wordsworth, R. & Pierrehumbert, R., Hydrogen-Nitrogen Greenhouse Warming in Earth's Early Atmosphere. Science 339, 64-67 (2013), http://www.sciencemag.org/content/339/6115/64.short.

14.

Greenwood, J. P. et al., Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nature Geoscience 4, 79–82 (2011), http://www.nature.com/ngeo/journal/v4/n2/abs/ngeo1050.html.

15.

Hartogh, P. et al., Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–220 (2011), http://www.nature.com/nature/journal/v478/n7368/abs/nature10519.html.

16.

Hui, H., Peslier, A. H., Zhang, Y. & Neal, C. R., Water in lunar anorthosites and evidence for a wet early Moon. Nature Geoscience 6, 177–180 (2013), http://www.nature.com/ngeo/journal/v6/n3/full/ngeo1735.html.

17.

Agle, D., Brown, D. & McDonnell, S., NASA's GRAIL Creates Most Accurate Moon Gravity Map (2012), http://www.jpl.nasa.gov/news/news.php?release=2012-385.

18.

NASA, GRAIL (2011), http://science.nasa.gov/missions/grail/.

19.

Ohtake, M. et al., Asymmetric crustal growth on the Moon indicated by primitive farside highland materials. Nature Geoscience 5, 384–388 (2012), http://www.nature.com/ngeo/journal/v5/n6/full/ngeo1458.html.

20.

Pope, E. C., Bird, D. K. & Rosing, M. T., Isotope composition and volume of Earth’s early oceans. PNAS 109 (2012), http://www.pnas.org/content/109/12/4371.short.

21.

Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P. & Holm, N., Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chemical Geology 191, 345–359 (2002), http://www.sciencedirect.com/science/article/pii/S0009254102001341.

22.

Lathe, R., Early tides: Response to Varga et al. Icarus 180, 277–280 (2006), http://www.sciencedirect.com/science/article/pii/S0019103505003271.

23.

Williams, G. E., Geological constraints on the Precambrian history of Earth's rotation and the Moon's orbit. Reviews of Geophysics 38, 37–59 (2000), http://www.agu.org/pubs/crossref/2000/1999RG900016.shtml.

24.

Reddy, S. M. & Evans, D. A. D., Palaeoproterozoic supercontinents and global evolution: correlations from core to atmosphere. Geological Society, London, Special Publications 323, 1-26 (2009), http://sp.lyellcollection.org/content/323/1/1.short.

25.

Hawkesworth, C. J. et al., The generation and evolution of the continental crust. Journal of the Geological Society 167, 229–248 (2010), http://jgs.lyellcollection.org/content/167/2/229.short.

26.

Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T., Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature 409, 178-181 (2001), http://www.nature.com/nature/journal/v409/n6817/full/409178A0.html.

27.

Lunine, J. I., Physical conditions on the early Earth. Philosophical Transactions of Royal Society of London B 361, 1721–1731 (2006), http://rstb.royalsocietypublishing.org/content/361/1474/1721.short.

28.

Menneken, M., Nemchin, A. A., Geisler, T., Pidgeon, R. T. & Wilde, S. A., Hadean diamonds in zircon from Jack Hills, Western Australia. Nature 448, 917-920 (2007), http://www.nature.com/nature/journal/v448/n7156/full/nature06083.html.

29.

Eriksson, K. A. & Wilde, S. A., Palaeoenvironmental analysis of Archaean siliciclastic sedimentary rocks in the west–central Jack Hills belt, Western Australia with new constraints on ages and correlations. Journal of the Geological Society 167, 827–840 (2010), http://jgs.lyellcollection.org/content/167/4/827.short.

30.

Coltice, N., Marty, B. & Yokochi, R., Xenon isotope constraints on the thermal evolution of the early Earth. Chemical Geology 266, 4-9 (2009), http://www.sciencedirect.com/science/article/pii/S000925410900206X.

31.

van Hunen, J. & van den Berg, A. P., Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 217-235, 217-235 (2008), http://www.sciencedirect.com/science/article/pii/S0024493707002265.

32.

Cohen, B. A., Swindle, D. T. & Kring, D. A., Support for the Lunar Cataclysm Hypothesis from Lunar Meteorite Impact Melt Ages. Science 290, 1754-1756 (2000), http://www.sciencemag.org/content/290/5497/1754.

33.

NASA, Planetary Fact Sheet (2010), http://nssdc.gsfc.nasa.gov/planetary/factsheet/.

34.

Pizzarello, S., Williams, L. B., Lehman, J., Holland, G. P. & Yarger, J. L., Abundant ammonia in primitive asteroids and the case for a possible exobiology. PNAS (2011), http://www.pnas.org/content/early/2011/02/22/1014961108.abstract.

35.

Willbold, M., Elliott, T. & Moorbath, S., The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature 477, 195–198 (2011), http://www.nature.com/nature/journal/v477/n7363/full/nature10399.html.

36.

Johnson, B. C. & Melosh, H. J., Impact spherules as a record of an ancient heavy bombardment of Earth. Nature 485, 75–77 (2012), http://www.nature.com/nature/journal/v485/n7396/full/nature10982.html.

37.

Ohtomo, Y., Kakegawa, T., Ishida, A., Nagase, T. & Rosing, M. T., Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nature Geoscience 7 (2013), http://www.nature.com/ngeo/journal/v7/n1/abs/ngeo2025.html.

38.

Lane, N., Allen, J. F. & Martin, W., How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32, 271-280 (2010), http://onlinelibrary.wiley.com/doi/10.1002/bies.200900131/abstract.

39.

Lane, N., Life Ascending (Norton, 2009), http://books.wwnorton.com/books/detail.aspx?ID=15651.

40.

Lazar, C., McCollom, T. M. & Manning, C. E., Abiogenic methanogenesis during experimental komatiite serpentinization: Implications for the evolution of the early Precambrian atmosphere. Chemical Geology 326-327, 102–112 (2012), http://www.sciencedirect.com/science/article/pii/S0009254112003257.

41.

Lombard, J., López-García, P. & Moreira, D., The early evolution of lipid membranes and the three domains of life. Nature Reviews Microbiology 10, 507-515 (2012), http://www.nature.com/nrmicro/journal/v10/n7/abs/nrmicro2815.html.

42.

Pasek, M. A., Harnmeijer, J. P., Buick, R., Gull, M. & Atlas, Z., Evidence for reactive reduced phosphorus species in the early Archean ocean. PNAS 110, 10089-10094 (2013), http://www.pnas.org/content/110/25/10089.abstract.html.

43.

Mulkidjanian, A. Y., On the origin of life in the Zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biology Direct 4 (2009), http://www.biologydirect.com/content/4/1/26.

44.

Russell, M. J. & Hall, A. J., The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. Journal of the Geological Society 154, 377–402 (1997), http://jgs.lyellcollection.org/content/154/3/377.short.

45.

Koonin, E. V., The Two Empires and Three Domains of Life in the Postgenomic Age. Nature Education 3 (2010), http://www.nature.com/scitable/topicpage/the-two-empires-and-three-domains-of-14432998.

46.

Allwood, A. C., Walter, M. R., Burch, I. W. & Kamber, B. S., 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth. Precambrian Research 158 (3-4), 198-227 (2007), http://www.sciencedirect.com/science/article/pii/S0301926807001234.

47.

Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J. & Brasier, M. D., Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geoscience 4 (2011), http://www.nature.com/ngeo/journal/v4/n10/abs/ngeo1238.html.

48.

Banerjee, N. R., Furnes, H., Muehlenbachs, K., Staudigel, H. & de Wit, M., Evidence for Early Life in ˜3.5 Billion-Year-Old Pillow Lavas, presented at American Geophysical Union, Fall Meeting 2004, 2004.

49.

DK Publishing, Prehistoric Life, 1st ed. (Dorling Kindersley, 2009), http://us.dk.com/nf/Book/BookDisplay/0,9780756699109,00.html​?strSrchSql=prehistoric+life/Prehistoric_Life_DK_Publishing.

50.

Sanderson, K., Calcified clue to ancient photosynthesis (2011), http://www.nature.com/news/2011/110706/full/news.2011.397.html.

51.

Sparks, W. B., DasSarma, S. & Reid, I. N., Evolutionary Competition Between Primitive Photosynthetic Systems: Existence of an early purple Earth?, presented at Bulletin of the American Astronomical Society, Seattle, 2007, http://adsabs.harvard.edu/abs/2006AAS.209.0605S.

52.

Hren, M. T., Tice, M. M. & Chamberlain, C. P., Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature 462, 205-208 (2009), http://www.nature.com/nature/journal/v462/n7270/full/nature08518.html.

53.

Blake, R. E., Chang, S. J. & Lepland, A., Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464, 1029-1032 (2010), http://www.nature.com/nature/journal/v464/n7291/abs/nature08952.html.

54.

Tarduno, J. A. et al., Geodynamo, Solar Wind, and Magnetopause 3.4 to 3.45 Billion Years Ago. Science 327, 1238-1240 (2010), http://www.sciencemag.org/content/327/5970/1238.short.

55.

Shirey, S. B. & Richardson, S. H., Start of the Wilson Cycle at 3 Ga Shown by Diamonds from Subcontinental Mantle. Science 333, 434-436 (2011), http://www.sciencemag.org/content/333/6041/434.abstract.

56.

Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D., A Change in the Geodynamics of Continental Growth 3 Billion Years Ago. Science 335, 1334-1336 (2012), http://www.sciencemag.org/content/335/6074/1334.abstract.

57.

Naeraa, T. et al., Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2Gyr ago. Nature 485, 627–630 (2012), http://www.nature.com/nature/journal/v485/n7400/full/nature11140.html.

58.

Kump, L. R., The rise of atmospheric oxygen. Nature 451, 277-278 (2008), http://www.nature.com/nature/journal/v451/n7176/full/nature06587.html.

59.

Pope, E., personal communication, in total ocean loss from hydrogen escape prevented by oxygenic photosynthesis? (2013).

60.

Wu, D. et al., Stalking the Fourth Domain in Metagenomic Data: Searching for, Discovering, and Interpreting Novel, Deep Branches in Marker Gene Phylogenetic Trees. PLoS One 6 (2011), http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018011.

61.

Colson, P., de Lamballerie, X., Fournous, G. & Raoult, D., Reclassification of Giant Viruses Composing a Fourth Domain of Life in the New Order Megavirales. Intervirology 55 (2012), http://www.karger.com/Article/Fulltext/336562.

62.

Zimmer, C., On the Origin of Eukaryotes. Science 325, 666-668 (2009), http://www.sciencemag.org/content/325/5941/666.short.

63.

Blank, C. E. & Sanchez-Baracaldo, P., Timing of morphological and ecological innovations in the cyanobacteria a key to understanding the rise in atmospheric oxygen. Geobiology 8, 1-23 (2010), http://onlinelibrary.wiley.com/doi/10.1111/j.1472-4669.2009.00220.x/abstract.

64.

Kendall, B. et al., Pervasive oxygenation along late Archaean ocean margins. Nature geoscience 3, 647 - 652 (2010), http://www.nature.com/ngeo/journal/v3/n9/full/ngeo942.html.

65.

Konhauser, K. O. et al., Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478, 369–373 (2011), http://www.nature.com/nature/journal/v478/n7369/full/nature10511.html.

66.

Stüeken, E. E., Catling, D. C. & Buick, R., Contributions to late Archaean sulphur cycling by life on land. Nature Geoscience 5, 722–725 (2012), http://www.nature.com/ngeo/journal/v5/n10/full/ngeo1585.html.

67.

Zerkle, A. L., Claire, M. W., Domagal-Goldman, S. D., Farquhar, J. & Poulton, S. W., A bistable organic-rich atmosphere on the Neoarchaean Earth. Nature Geoscience 5, 359–363 (2012), http://www.nature.com/ngeo/journal/v5/n5/full/ngeo1425.html.

68.

Sessions, A. L., Doughty, D. M., Welander, P. V., Summons, R. E. & Newman, D. K., The Continuing Puzzle of the Great Oxidation Event. Current Biology 19, R567–R574 (2009), http://www.sciencedirect.com/science/article/pii/S0960982209011890.

69.

Fairchild, I. J. & Kennedy, M. J., Neoproterozoic glaciation in the Earth System. Journal of the Geological Society, London 164, 895-921 (2007), http://jgs.lyellcollection.org/content/164/5/895.abstract.

70.

Retallack, G. J., Krull, E. S., Thackray, G. D. & Parkinson, D., Problematic urn-shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa. Precambrian Research 235, 71–87 (2013), http://www.sciencedirect.com/science/article/pii/S0301926813001812.

71.

El Albani, A. et al., Large colonial organisms with coordinated growth in oxygenated environments 2.1Gyr ago. Nature 466, 100-104 (2010), http://www.nature.com/nature/journal/v466/n7302/full/nature09166.html.

72.

Lyons, T. W., Reinhard, C. T. & Planavsky, N. J., The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506 (2014), http://www.nature.com/nature/journal/v506/n7488/full/nature13068.html.

73.

Meshik, A. P., The Workings of an Ancient Nuclear Reactor (2009), http://www.scientificamerican.com/article.cfm?id=ancient-nuclear-reactor.

74.

Shufeldt, O. P., Karlstrom, K. E., Gehrels, G. E. & Howard, K. E., Archean detrital zircons in the Proterozoic Vishnu Schist of the Grand Canyon, Arizona: Implications for crustal architecture and Nuna supercontinent reconstructions. Geology 38, 1099-1102 (2010), http://geology.geoscienceworld.org/cgi/content/abstract/38/12/1099.

75.

Wacey, D. et al., Nanoscale analysis of pyritized microfossils reveals differential heterotrophic consumption in the 1.9-Ga Gunflint chert. PNAS (2013), http://www.pnas.org/content/early/2013/04/26/1221965110.abstract.

76.

Pires, N. D. & Dolan, L., Morphological evolution in land plants: new designs with old genes. Philosophical Transactions of The Royal Society B 367, 508-518 (2012), http://rstb.royalsocietypublishing.org/content/367/1588/508.abstract.

77.

Keeling, P. J., The endosymbiotic origin, diversification and fate of plastids. Philosophical Transactions of the Royal Society B 365, 729-748 (2010), http://rstb.royalsocietypublishing.org/content/365/1541/729.full.

78.

Strother, P. K., Battison, L., Brasier, M. D. & Wellman, C. H., Earth’s earliest non-marine eukaryotes. Nature 473, 505–509 (2011), http://www.nature.com/nature/journal/v473/n7348/full/nature09943.html.

79.

Scotese, C. R., Late Proterozoic plate tectonics and palaeogeography: a tale of two supercontinents, Rodinia and Pannotia. Geological Society, London, Special Publications 326, 67-83 (2009), http://sp.lyellcollection.org/content/326/1/67.abstract.

80.

Knauth, L. P. & Kennedy, M. J., The late Precambrian greening of the Earth. Nature 460, 728-732 (2009), http://www.nature.com/nature/journal/v460/n7256/full/nature08213.html.

81.

Gensel, P., The Earliest Land Plants. Annual Review of Ecology, Evolution, and Systematics 39, 459–77 (2008), http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.39.110707.173526.

82.

Retallack, G. J., Ediacaran Gaskiers Glaciation of Newfoundland reconsidered. Journal of the Geological Society 19-36, 19-36 (2013), http://jgs.lyellcollection.org/content/170/1/19.abstract.

83.

Retallack, G. J., Neoproterozoic loess and limits to snowball Earth. Journal of the Geological Society of London 168, 289-308 (2011), http://jgs.lyellcollection.org/content/168/2/289.abstract.

84.

Macdonald, F. A. et al., Calibrating the Cryogenian. Science 327, 1241-1243 (2010), http://www.sciencemag.org/content/327/5970/1241.abstract.

85.

Le Heron, D. P., Cox, G., Trundley, A. & Collins, A., Sea ice−free conditions during the Sturtian glaciation (early Cryogenian), South Australia. Geology 39, 31-34 (2010), http://geology.gsapubs.org/content/39/1/31.abstract.

86.

Sawaki, Y. et al., The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Research 176, 46–64 (2010), http://www.sciencedirect.com/science/article/pii/S0301926809002137.

87.

Sahoo, S. K. et al., Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489, 546–549 (2012), http://www.nature.com/nature/journal/v489/n7417/full/nature11445.html.

88.

Svensen, H. et al., Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters 277 (2009), http://www.sciencedirect.com/science/article/pii/S0012821X08007292.

89.

Saltzman, M. R. et al., Pulse of atmospheric oxygen during the late Cambrian. PNAS 108, 3876-3881 (2011), http://www.pnas.org/content/108/10/3876.short.

90.

Dahl, T. W. et al., Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. PNAS 107, 17911-17915 (2010), http://www.pnas.org/content/107/42/17911.full.

91.

Peterson, K. J., Cotton, J. A., Gehling, J. G. & Pisani, D., The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philosophical Transactions of The Royal Society B 363, 1435-1443 (2008), http://rstb.royalsocietypublishing.org/content/363/1496/1435.full.

92.

University of California Museum of Palaeontology, Localities of the Vendian: Ediacara Hills, Australia, http://www.ucmp.berkeley.edu/vendian/ediacara.html.

93.

Maloof, A. C. et al., Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature Geoscience 3 (2010), http://www.nature.com/ngeo/journal/v3/n9/abs/ngeo934.html.

94.

Love, G. D. et al., Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718-722 (2009), http://www.nature.com/nature/journal/v457/n7230/abs/nature07673.html.

95.

Feuda, R., Hamilton, S. C., McInerney, J. O. & Pisani, D., Metazoan opsin evolution reveals a simple route to animal vision. PNAS 109, 18868-18872 (2012), http://www.pnas.org/content/109/46/18868.

96.

Planetary and Space Science Centre (PASSC), Earth Impact Database (2013), http://www.passc.net/EarthImpactDatabase/index.html.

97.

McKirdy, D. M., Webster, L. J., Arouri, K. R., Grey, K. & Gostin, V. A., Contrasting sterane signatures in Neoproterozoic marine rocks of Australia before and after the Acraman asteroid impact. Organic Geochemistry 37, 189-207 (2006), http://www.sciencedirect.com/science/article/pii/S014663800500210X.

98.

Holland, P. et al., Homeobox genes and body patterning at the dawn of Bilateria, presented at Lyell Meeting 2013: The Cambrian Explosion – understanding Earth systems at the origin of modern ecosystems, London, 2013, http://www.geolsoc.org.uk/lyell13.

99.

Kravchinsky, V. A., Paleozoic large igneous provinces of Northern Eurasia: Correlation with mass extinction events. Global and Planetary Change 86–87, 31–36 (2012), http://www.sciencedirect.com/science/article/pii/S0921818112000082.

100.

Maloof, A. C. et al., The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin 122, 1731-1774 (2010), http://gsabulletin.gsapubs.org/content/122/11-12/1731.short.

101.

Peters, S. E. & Gaines, R. R., Formation of the Great Unconformity as a trigger for the Cambrian explosion. Nature 484, 363–366 (2012), http://www.nature.com/nature/journal/v484/n7394/full/nature10969.html.

102.

Dzik, J., The Verdun Syndrome: simultaneous origin of protective armour and infaunal shelters at the Precambrian-Cambrian transition. Geological Society, London, Special Publications 286, 405-414 (2007), http://sp.lyellcollection.org/content/286/1/405.short.

103.

McIlroy, D., Did bioturbating ‘ecosystem engineers’ fuel the Cambrian explosion?, presented at Lyell Meeting 2013: The Cambrian Explosion – understanding Earth systems at the origin of modern ecosystems, London, 2013, http://www.geolsoc.org.uk/lyell13.

104.

Lyons, T. W. & Gill, B. C., The worm turned, and the ocean followed. PNAS 106, 8081-8082 (2009), http://www.pnas.org/content/106/20/8081.full.

105.

Canfield, D. E. & Farquha, J., Animal evolution, bioturbation, and the sulfate concentration of the oceans. PNAS 106, 8123-8127 (2009), http://www.pnas.org/content/106/20/8123.full.

106.

Horita, J., Zimmermann, H. & Holland, H. D., Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochimica et Cosmochimica Acta 66, 3733–3756 (2002), http://www.sciencedirect.com/science/article/pii/S0016703701008845.

107.

Brennan, S. T., Lowenstein, T. K. & Horita, J., Seawater chemistry and the advent of biocalcification. Geology 32, 473-476 (2004), http://geology.geoscienceworld.org/cgi/content/abstract/32/6/473.

108.

European Environment Agency, Ocean acidification (CLIM 043) - Assessment published Nov 2012 (2012), http://www.eea.europa.eu/data-and-maps/indicators/​ocean-acidification/assessment.

109.

Murdock, D., The hard parts of the Cambrian explosion - multiple origins of animal skeletal biomineralization, presented at Lyell Meeting 2013: The Cambrian Explosion – understanding Earth systems at the origin of modern ecosystems, 2013, http://www.geolsoc.org.uk/lyell13.

110.

Butterfield, N. J., The invention of Phanerozoic food webs, presented at Lyell Meeting 2013: The Cambrian Explosion – understanding Earth systems at the origin of modern ecosystems, London, 2013, http://www.geolsoc.org.uk/lyell13.

111.

Shu, D. G. et al., Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421, 526-529 (2003), http://www.nature.com/nature/journal/v421/n6922/abs/nature01264.html.

112.

Smith, M. R. & Caron, J.-B., Primitive soft-bodied cephalopods from the Cambrian. Nature 465, 469–472 (2010), http://www.nature.com/nature/journal/v465/n7297/full/nature09068.html.

113.

Ishikawa, T. et al., The δ13C excursions spanning the Cambrian explosion to the Canglangpuian mass extinction in the Three Gorges area, South China. Gondwana Research (2013), http://www.sciencedirect.com/science/article/pii/S1342937X1300110X.

114.

Ishikawa, T. et al., The oceanic carbon cycle implicated in the d13Ccarb and the d13Corg variations from the terminal Ediacaran to the Early Cambrian, presented at EGU General Assembly 2009, Vienna, 2009, http://meetingorganizer.copernicus.org/EGU2009/EGU2009-10420-1.pdf.

115.

Armstrong, H. A., Harper, D. A. T., Trabucho-Alexandre, J. & Smith, M. P., Glacio-eustasy during the Cambrian Explosion – a control on macroevolutionary patterns?, presented at Lyell Meeting 2013: The Cambrian Explosion – understanding Earth systems at the origin of modern ecosystems, London, 2013, http://www.geolsoc.org.uk/lyell13.

116.

Jourdan, F. et al., High-precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early–Middle Cambrian (Stage 4–5) extinction. Geology (2014), http://geology.geoscienceworld.org/content/early/2014/04/22/G35434.1.abstract.

117.

Blakey, R., Global Paleogeography, http://cpgeosystems.com/index.html.

118.

Rubinstein, C. V., Gerrienne, P., de la Puente, G. S., Astini, R. A. & Steemans, P., Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytologist 188, 365–369 (2010), http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2010.03433.x/abstract.

119.

Strother, P. K., Servais, T. & Vecoli, M., The effects of terrestrialization on marine ecosystems: the fall of CO2. Geological Society, London, Special Publications 339, 37-48 (2010), http://sp.lyellcollection.org/content/339/1/37.abstract.

120.

Elrick, M., Rieboldt, S., Saltzman, M. & McKay, R. M., Oxygen-isotope trends and seawater temperature changes across the Late Cambrian Steptoean positive carbon-isotope excursion (SPICE event). Geology 39, 987-990 (2011), http://geology.gsapubs.org/content/39/10/987.short.

121.

Woods, M. A., Wilby, P. R., Leng, M. J., Rushton, A. W. & Williams, M., The Furongian (late Cambrian) Steptoean Positive Carbon Isotope Excursion (SPICE) in Avalonia. Journal of the Geological Society 168, 851-862 (2011), http://jgs.lyellcollection.org/content/168/4/851.short.

122.

Gill, B. C. et al., Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature 469, 80-83 (2011), http://www.nature.com/nature/journal/v469/n7328/abs/nature09700.html.

123.

Servais, T., Owen, A. W., Harper, D. A., Kröger, B. & Munnecke, A., The Great Ordovician Biodiversification Event (GOBE): The palaeoecological dimension. Palaeogeography, Palaeoclimatology, Palaeoecology 294, 99–119 (2010), http://www.sciencedirect.com/science/article/pii/S0031018210003184.

124.

Bates, D. E., Kozlowska, A. & Lenz, A. C., Silurian retiolitid graptolites: Morphology and evolution. Acta Palaeontologica Polonica 50, 705–720 (2005), http://www.app.pan.pl/archive/published/app50/app50-705.pdf.

125.

Gutiérrez-Marco, J. C., Sá, A. A., García-Bellido, D. C., Rábano, I. & Valério, M., Giant trilobites and trilobite clusters from the Ordovician of Portugal. Geology 37, 443-446 (2009), http://geology.gsapubs.org/content/37/5/443.short.

126.

WWF, Coral Reefs, http://wwf.panda.org/about_our_earth/blue_planet/coasts/coral_reefs/.

127.

USGS, Iowa Meteorite Crater Confirmed (2013), http://www.usgs.gov/newsroom/article.asp?ID=3521.

128.

Parnell, J., Global mass wasting at continental margins during Ordovician high meteorite influx. Nature Geoscience 2, 57 - 61 (2009), http://www.nature.com/ngeo/journal/v2/n1/full/ngeo386.html.

129.

Lenton, T. M., Crouch, M., Johnson, M., Pires, N. & Dolan, L., First plants cooled the Ordovician. Nature Geoscience 5, 86–89 (2012), http://www.nature.com/ngeo/journal/v5/n2/full/ngeo1390.html.

130.

Pancost, R. D. et al., Reconstructing Late Ordovician carbon cycle variations. Geochimica et Cosmochimica Acta 105 (2013), http://www.sciencedirect.com/science/article/pii/S0016703712006862.

131.

Nardin, E. et al., Modeling the early Paleozoic long-term climatic trend. Geological Society of America Bulletin (2011), http://gsabulletin.gsapubs.org/content/123/5-6/1181.short.

132.

Finnegan, S. et al., The Magnitude and Duration of Late Ordovician–Early Silurian Glaciation. Science 331, 903-906 (2011), http://www.sciencemag.org/content/331/6019/903.full.

133.

Brenchley, P. J. et al., High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Bulletin of the Geological Society of America 115, 89-104 (2003), http://gsabulletin.gsapubs.org/content/115/1/89.abstract.

134.

Yan, D., Chen, D., Wang, Q. & Wang, J., Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, south ChinA. Geology 38, 599-602 (2010), http://geology.gsapubs.org/content/38/7/599.short.

135.

Lehnert, O., Männik, P., Joachimski, M. M., Calner, M. & Frýda, J., Palaeoclimate perturbations before the Sheinwoodian glaciation: A trigger for extinctions during the ‘Ireviken Event’. Palaeogeography, Palaeoclimatology, Palaeoecology 296, 320–331 (2010), http://www.sciencedirect.com/science/article/pii/S0031018210000106.

136.

Long, J. A., Trinajstic, K. & Johanson, Z., Devonian arthrodire embryos and the origin of internal fertilization in vertebrates. Nature 457, 1124-1127 (2008), http://www.nature.com/nature/journal/v457/n7233/full/nature07732.html.

137.

Brazeau, M. D., The braincase and jaws of a Devonian acanthodian and modern gnathostome origins. Nature 457, 305-308 (2009), http://www.nature.com/nature/journal/v457/n7227/abs/nature07436.html.

138.

Botella, H., Blom, H., Dorka, M., Ahlberg, P. E. & Janvier, P., Jaws and teeth of the earliest bony fishes. Nature 448, 583-586 (2007), http://www.nature.com/nature/journal/v448/n7153/abs/nature05989.html.

139.

Gibling, M. R. & Davies, N. S., Palaeozoic landscapes shaped by plant evolution. Nature Geoscience 5, 99–105 (2012), http://www.nature.com/ngeo/journal/v5/n2/full/ngeo1376.html.

140.

Jasechko, S. et al., Terrestrial water fluxes dominated by transpiration. Nature 496, 347–350 (2013), http://www.nature.com/nature/journal/v496/n7445/full/nature11983.html.

141.

Scott, A. C. & Glasspool, I. J., The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. PNAS 103, 10861–10865 (2006), http://www.pnas.org/content/103/29/10861.abstract.

142.

Swartz, B., A Marine Stem-Tetrapod from the Devonian of Western North America. PLoS ONE 7 (2012), http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0033683.

143.

Amemiya, C. T. et al., The African coelacanth genome provides insights into tetrapod evolution. Nature 496, 311–316 (2013), http://www.nature.com/nature/journal/v496/n7445/full/nature12027.html.

144.

Long, J. A., Young, G. C., Holland, T., Senden, T. J. & Fitzgerald, E. M., An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444, 199-202 (2006), http://www.nature.com/nature/journal/v444/n7116/full/nature05243.html.

145.

University of Chicago, Tiktaalik roseae, http://tiktaalik.uchicago.edu/index.html.

146.

Ahlberg, P. E. & Clack, J. A., A firm step from water to land. Nature 440, 747-749 (2006), http://www.nature.com/nature/journal/v440/n7085/full/440747a.html.

147.

Niedzwiedzki, G., Szrek, P., Narkiewicz, K., Narkiewicz, M. & Ahlberg, P. E., Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463, 43-48 (2010), http://www.nature.com/nature/journal/v463/n7277/full/nature08623.html.

148.

Garrouste, R. et al., A complete insect from the Late Devonian period. Nature 488, 82–85 (2012), http://www.nature.com/nature/journal/v488/n7409/full/nature11281.html.

149.

Retallack, G. J., Hunt, R. R. & White, T. S., Late Devonian tetrapod habitats indicated by palaeosols in Pennsylvania. Journal of the Geological Society, London 166, 1143-1156 (2009), http://jgs.lyellcollection.org/content/166/6/1143.abstract.

150.

Breecker, D. O., Sharp, Z. D. & McFadden, L. D., Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100. PNAS 107, 576-580 (2009), http://www.pnas.org/content/107/2/576.full.

151.

Konrad, W., Roth-Nebelsick, A. & Grein, M., Modelling of stomatal density response to atmospheric CO2. Journal of Theoretical Biology 253, 638–658 (2008), http://www.sciencedirect.com/science/article/pii/S0022519308001677.

152.

Courtillot, V., Kravchinsky, V. A., Quidelleur, X., Renne, P. R. & Gladkochub, D. P., Preliminary dating of the Viluy traps (Eastern Siberia): Eruption at the time of Late Devonian extinction events? Earth and Planetary Science Letters 300, 239-245 (2010), http://www.sciencedirect.com/science/article/pii/S0012821X10006321.

153.

Menor-Salván, C., Tornos, F., Fernández-Remolar, D. & Amils, R., Association between catastrophic paleovegetation changes during Devonian–Carboniferous boundary and the formation of giant massive sulfide deposits. Earth and Planetary Science Letters 299, 398-408 (2010), http://www.sciencedirect.com/science/article/pii/S0012821X10005959.

154.

John, E. H., Wignalla, P. B., Newton, R. J. & Bottrell, S. H., δ34SCAS and δ18OCAS records during the Frasnian–Famennian (Late Devonian) transition and their bearing on mass extinction models. Chemical Geology 275, 221-234 (2010), http://www.sciencedirect.com/science/article/pii/S0009254110001762.

155.

Marynowski, L. et al., Deciphering the upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record. Palaeogeography, Palaeoclimatology, Palaeoecology 346–347, 66–86 (2012), http://www.sciencedirect.com/science/article/pii/S0031018212002866.

156.

Sallana, L. C. & Coatesa, M. I., End-Devonian extinction and a bottleneck in the earlyevolution of modern jawed vertebrates. PNAS 107, 10131–10135 (2010), http://www.pnas.org/content/107/22/10131.short.

157.

Koren, T. N. & Rickards, R. B., Extinction of the graptolites. Geological Society, London, Special Publications 8, 457-466 (1979), http://sp.lyellcollection.org/content/8/1/457.short.

158.

Decombeix, A. L., Meyer-Berthaud, B. & Galtier, J., Transitional changes in arborescent lignophytes at the Devonian–Carboniferous boundary. Journal of the Geological Society 168, 547-557 (2011), http://jgs.lyellcollection.org/content/168/2/547.abstract.

159.

Berner, R. A., Atmospheric oxygen over Phanerozoic time. PNAS 96, 10955-10957 (1999), http://www.pnas.org/content/96/20/10955.full.

160.

Korn, D. & Klug, C., Morphological pathways in the evolution of Early and Middle Devonian ammonoids. Paleobiology 29, 329-348 (2003), http://paleobiol.geoscienceworld.org/cgi/content/abstract/29/3/329.

161.

University of California Museum of Paleontology, Lycophyta: Fossil Record, http://www.ucmp.berkeley.edu/plants/lycophyta/lycofr.html.

162.

Falcon-Lang, H. J., Early Mississippian lycopsid forests in a delta-plain setting at Norton, near Sussex, New Brunswick, Canada. Journal of the Geological Society 161, 969-981 (2004), http://jgs.lyellcollection.org/content/161/6/969.short.

163.

Joggins Fossil Institute, Early Researchers & Finds (2012), http://jogginsfossilcliffs.net/cliffs/history/.

164.

Dolby, G., Falcon-Lang, H. J. & Gibling, M. R., A conifer-dominated palynological assemblage from Pennsylvanian (late Moscovian) alluvial drylands in Atlantic Canada: implications for the vegetation of tropical lowlands during glacial phases. Journal of the Geological Society, London 168, 571–584 (2011), http://jgs.lyellcollection.org/content/168/2/571.abstract.

165.

Glasspool, I. J. & Scott, A. C., Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience 3, 627 - 630 (2010), http://www.nature.com/ngeo/journal/v3/n9/abs/ngeo923.html.

166.

Isbell, J. L. et al., Glacial paradoxes during the late Paleozoic ice age: Evaluating the equilibrium line altitude as a control on glaciation. Gondwana Research 22, 1–19 (2012), http://www.sciencedirect.com/science/article/pii/S1342937X11003248.

167.

Grossman, E. L. et al., Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology 268, 222–233 (2008), http://www.sciencedirect.com/science/article/pii/S0031018208003027.

168.

Bishop, J. W., Montañez, I. P. & Osleger, D. A., Dynamic Carboniferous climate change, Arrow Canyon, Nevada. Geosphere 6, 1-34 (2010), http://geosphere.gsapubs.org/content/6/1/1.abstract.

169.

Barnett, A. J. & Wright, V. P., A sedimentological and cyclostratigraphic evaluation of the completeness of the Mississippian–Pennsylvanian (Mid-Carboniferous) Global Stratotype Section and Point, Arrow Canyon, Nevada, USA. Journal of the Geological Society, London 165, 859–873 (2008), http://jgs.lyellcollection.org/content/165/4/859.abstract.

170.

Falcon-Lang, H., First reptiles make tracks. Geoscientist online 20, 16-19 (2010), https://www.geolsoc.org.uk/Geoscientist/Archive/​September-2010/First-reptiles-make-tracks.

171.

Modesto, S. P., Scott, D. M. & Reisz, R. R., Arthropod remains in the oral cavities of fossil reptiles support inference of early insectivory. Biology Letters 5, 838-840 (2009), http://rsbl.royalsocietypublishing.org/content/5/6/838.

172.

Glikson, A. Y., Uysal, I. T., Fitz Gerald, J. D. & Saygin, E., Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-east South Australia: Tectonic or impact shock metamorphic origin? Tectonophysics 589, 57–76 (2013), http://www.sciencedirect.com/science/article/pii/S0040195113000188.

173.

Sahney, S., Benton, M. J. & Falcon-Lang, H. J., Rainforest collapse triggered Carboniferous tetrapod diversification in Euramerica 38, 1079-1082 (2010), http://geology.geoscienceworld.org/cgi/content/abstract/38/12/1079.

174.

Stevens, L. G., Hilton, J., Bond, D. P., Glasspool, I. J. & Jardine, P. E., Radiation and extinction patterns in Permian floras from North China as indicators for environmental and climate change. Journal of the Geological Society, London 168, 607–619 (2011), http://jgs.lyellcollection.org/content/168/2/607.abstract.

175.

Altzheimer's Association, 2010.

176.

Ali, J. R., Fitton, J. G. & Herzberg, C., Emeishan large igneous province (SW China) and the mantle-plume up-doming hypothesis. Journal of the Geological Society, London 167, 953–959 (2010), http://jgs.lyellcollection.org/content/167/5/953.short.

177.

Tohver, E., Cawood, P. A., Riccomini, C., Lana, C. & Trindade, R. I. F., Shaking a methane fizz: Seismicity from the Araguainha impact event and the Permian–Triassic global carbon isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology (2013), http://www.sciencedirect.com/science/article/pii/S0031018213003313.

178.

Sobolev, S. V. et al., Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011), http://www.nature.com/nature/journal/v477/n7364/abs/nature10385.html.

179.

Burgess, S. D., Bowring, S. & Shen, S. Z., High-precision timeline for Earth’s most severe extinction. PNAS (2014), http://www.pnas.org/content/early/2014/02/04/1317692111.short.

180.

Grasby, S. E., Sanei, H. & Beauchamp, B., Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience 4, 104–107 (2011), http://www.nature.com/ngeo/journal/v4/n2/full/ngeo1069.html.

181.

Payne, J. L. et al., Calcium isotope constraints on the end-Permian mass extinction. PNAS 107 (2010), http://www.pnas.org/content/107/19/8543.full.

182.

Sun, Y. et al., Lethally Hot Temperatures During the Early Triassic Greenhouse. Science 338, 366-370 (2012), http://www.sciencemag.org/content/338/6105/366.abstract.

183.

Black, B. A., Lamarque, J. F., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T., Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42 (2013), http://geology.gsapubs.org/content/42/1/67.short.

184.

Song, H. et al., Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth and Planetary Science Letters 353-354, 12–21 (2012), http://www.sciencedirect.com/science/article/pii/S0012821X12003640.

185.

Abu Hamad, A., Jasper, A. & Uhl, D., The record of Triassic charcoal and other evidence for palaeo-wildfires: Signal for atmospheric oxygen levels, taphonomic biases or lack of fuel? International Journal of Coal Geology 96-97, 60–71 (2012), http://www.sciencedirect.com/science/article/pii/S0166516212000791.

186.

Nesbitt, S. J., Barrett, P. M., Werning, S., Sidor, C. A. & Charig, A. J., The oldest dinosaur? A Middle Triassic dinosauriform from Tanzania. Biology Letters 9 (2012), http://rsbl.royalsocietypublishing.org/content/9/1/20120949.abstract.

187.

Roghi, G., Gianolla, P., Minarelli, L., Pilati, C. & Preto, N., Palynological correlation of Carnian humid pulses throughout western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology 290, 89-106 (2010), http://www.sciencedirect.com/science/article/pii/S0031018209004805.

188.

Dal Corso, J. et al., Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts. Geology 40, 79-82 (2011), http://geology.gsapubs.org/content/40/1/79.short.

189.

Retallack, G. J., Greenhouse crises of the past 300 million years. Geological Society of America Bulletin 121, 1441-1455 (2009), http://gsabulletin.gsapubs.org/content/121/9-10/1441.short.

190.

Pretoa, N., Kustatscher, E. & Wignall, P. B., Triassic climates — State of the art and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology 290, 1-10 (2010).

191.

Ridgwell, A., A Mid Mesozoic Revolution in the regulation of ocean chemistry. Marine Geology 217, 339–357 (2005), http://www.sciencedirect.com/science/article/pii/S0025322705000575.

192.

Korte, C., Hesselbo, S. P., Jenkyns, H. C., Rickaby, R. E. & Spötl, C., Palaeoenvironmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic -Jurassic boundary sections in SW Britain. Journal of the Geological Society 166, 431–445 (2009), http://jgs.lyellcollection.org/content/166/3/431.abstract.

193.

Van de Schootbrugge, B., Palaeoclimate: A fiery start to the Jurassic. Nature Geoscience 3, 381 - 382 (2010), http://www.nature.com/ngeo/journal/v3/n6/full/ngeo878.html.

194.

Blackburn, T. J. et al., Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province. Science 340 (2013), http://www.sciencemag.org/content/340/6135/941.abstract.

195.

Ruhl, M., Bonis, N. R., Reichart, G. J., Damsté, J. S. S. & Kürschner, W. M., Atmospheric Carbon Injection Linked to End-Triassic Mass Extinction. Science 333, 430-434 (2011), http://www.sciencemag.org/content/333/6041/430.abstract.

196.

Van de Schootbrugge, B. et al., Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience 2, 589 - 594 (2009), http://www.nature.com/ngeo/journal/v2/n8/abs/ngeo577.html.

197.

Suan, G. et al., Major environmental change and bonebed genesis prior to the Triassic–Jurassic mass extinction. Journal of the Geological Society 169, 191-200 (2012), http://jgs.lyellcollection.org/content/169/2/191.abstract.

198.

Richoz, S. et al., Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nature Geoscience 5, 662–667 (2012), http://www.nature.com/ngeo/journal/v5/n9/abs/ngeo1539.html.

199.

Schmieder, M., Buchner, E., Schwarz, W. H., Trieloff, M. & Lambert, P., A Rhaetian 40Ar/39Ar age for the Rochechouart impact structure (France) and implications for the latest Triassic sedimentary record. Meteorics and Planetary Science 45, 1225-1242 (2010), http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2010.01070.x/abstract.

200.

Cúneo, R. et al., High-precision U–Pb geochronology and a new chronostratigraphy for the Cañadón Asfalto Basin, Chubut, central Patagonia: Implications for terrestrial faunal and floral evolution in Jurassic. Gondwana Research (2013), http://www.sciencedirect.com/science/article/pii/S1342937X13000609.

201.

Caswell, B. A., Coe, A. L. & Cohen, A. S., New range data for marine invertebrate species across the early Toarcian (Early Jurassic) mass extinction. Journal of the Geological Society 166, 859–872 (2009), http://jgs.lyellcollection.org/content/166/5/859.short.

202.

Cohen, A. S., Coe, A. L. & Kemp, D. B., The Late Palaeocene-Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their time scales, associated environmental changes, causes and consequences. Journal of the Geological Society 164, 1093-1108 (2007), http://jgs.lyellcollection.org/content/164/6/1093.abstract.

203.

Mannion, P. D., Upchurch, P., Carrano, M. T. & Barrett, P. M., Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biological Reviews 86, 157–181 (2010), http://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.2010.00139.x/abstract.

204.

Castro, A. et al., SHRIMP U-Pb zircon geochronology of Mesozoic granitoids from the Bariloche region (Argentina): Implications for the Middle-Late Jurassic evolution of the North Patagonian batholith. Geophysical Research Abstracts 12 (2010), http://meetingorganizer.copernicus.org/EGU2010/EGU2010-12747.pdf.

205.

Godefroit, P. et al., A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature 498, 359–362 (2013), http://www.nature.com/nature/journal/v498/n7454/full/nature12168.html.

206.

Laursen, L., Crested dinosaur pushes back dawn of feathers. Nature News 467 (2010), http://www.nature.com/news/2010/100908/full/news.2010.455.html.

207.

Zimmer, C., 2011 , http://ngm.nationalgeographic.com/2011/02/feathers/zimmer-text.

208.

Zelenitsky, D. K. et al., Feathered Non-Avian Dinosaurs from North America Provide Insight into Wing Origins. Science 338, 510-514 (2012), http://www.sciencemag.org/content/338/6106/510.short.

209.

Chatterjee, S. & Templin, R. J., in Earth and Life, edited by Talent, J. A. (Springer Netherlands, 2012), pp. 585-612, http://www.springerlink.com/content/h2754p7l24828n38/.

210.

Knight, K., Birds "flap run" to save energy. Journal of Experimental Biology 214 (2011), http://jeb.biologists.org/content/214/14/i.1.full.

211.

Zheng, X. et al., Hind Wings in Basal Birds and the Evolution of Leg Feathers. Science 339, 1309-1312 (2013), http://www.sciencemag.org/content/339/6125/1309.

212.

Xu, X., Feathered dinosaurs from China and the evolution of major avian characters. Integrative Zoology 1, 4-11 (2006), http://onlinelibrary.wiley.com/doi/10.1111/j.1749-4877.2006.00004.x/abstract.

213.

Xu, X., You, H., Du, K. & Han, F., An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475, 465–470 (2011), http://www.nature.com/nature/journal/v475/n7357/abs/nature10288.html.

214.

Hesselbo, S. P., DeConinck, J. F., Huggett, J. M. & Morgans-Bell, H. S., Late Jurassic palaeoclimatic change from clay mineralogy and gamma-ray spectrometry of the Kimmeridge Clay, Dorset, UK. Journal of the Geological Society, London 166, 1123–1133 (2009), http://jgs.lyellcollection.org/content/166/6/1123.short.

215.

Martin-Garin, B., Lathuilière, B. & Geisterd, J., The shifting biogeography of reef corals during the Oxfordian (Late Jurassic). A climatic control? Palaeogeography, Palaeoclimatology, Palaeoecology 365-366, 136–153 (2012), http://www.sciencedirect.com/science/article/pii/S0031018212005354.

216.

Royer, D. L., CO2-forced climate thresholds during the Phanerozoic. Geochimica et Cosmochimica Acta 70, 5665–5675 (2006), http://www.sciencedirect.com/science/article/pii/S0016703706001979.

217.

Bergelin, I., Obst, K., Söderlund, U., Larsson, K. & Johansson, L., Mesozoic rift magmatism in the North Sea region: 40Ar/39Ar geochronology of Scanian basalts and geochemical constraints. International Journal of Earth Sciences 100, 787-804 (2011), http://link.springer.com/article/10.1007/s00531-010-0516-3.

218.

Ichiyama, Y. et al., Picrites in central Hokkaido: Evidence of extremely high temperature magmatism in the Late Jurassic ocean recorded in an accreted oceanic plateau. Geology 40, 411-414 (2012), http://geology.gsapubs.org/content/40/5/411.short.

219.

Bryan, S. E. & Ernst, R. E., Revised definition of Large Igneous Provinces (LIPs). Earth-Science Reviews 86, 175–202 (2008), http://www.sciencedirect.com/science/article/pii/S0012825207001201.

220.

Schmitz, L. & Motani, R., Nocturnality in Dinosaurs Inferred from Scleral Ring and Orbit Morphology. Science (2011), http://www.sciencemag.org/content/early/2011/04/13/science.1200043.

221.

Reston, T. J., The opening of the central segment of the South Atlantic: symmetry and the extension discrepancy. Petroleum Geoscience 16, 199–206 (2010), http://pg.lyellcollection.org/content/16/3/199.short.

222.

Tucholke, B. E., Sawyer, D. S. & Sibuet, J. C., Breakup of the Newfoundland–Iberia rift. Geological Society, London, Special Publications 282, 9-46 (2007), http://sp.lyellcollection.org/content/282/1/9.abstract.

223.

Sigloch, K. & Mihalynuk, M. G., Intra-oceanic subduction shaped the assembly of Cordilleran North America. Nature 496, 50–56 (2013), http://www.nature.com/nature/journal/v496/n7443/full/nature12019.html.

224.

Littler, K., Robinson, S. A., Bown, P. R., Nederbragt, A. J. & Pancost, R. D., High sea-surface temperatures during the Early Cretaceous Epoch. Nature Geoscience 4, 169–172 (2011), http://www.nature.com/ngeo/journal/v4/n3/abs/ngeo1081.html.

225.

Friis, E. M., Pedersen, K. R. & Crane, P. R., Diversity in obscurity: fossil flowers and the early history of angiosperms. Plilosophical Transactions of the Royal Society B 365, 369–382 (2010), http://rstb.royalsocietypublishing.org/content/365/1539/369.abstract.

226.

Sun, G., Dilcher, D. L., Wang, H. & Chen, Z., A eudicot from the Early Cretaceous of China. Nature 471, 625–628 (2011), http://www.nature.com/nature/journal/v471/n7340/full/nature09811.html.

227.

Longrich, N. R., Bhullar, B. A. S. & Gauthier, J. A., A transitional snake from the Late Cretaceous period of North America. Nature 488 (2012), http://www.nature.com/nature/journal/v488/n7410/full/nature11227.html.

228.

Lloyd, G. T. et al., Dinosaurs and the Cretaceous Terrestrial Revolution. Proceedings of The Royal Society B 275, 2483-2490 (2008), http://rspb.royalsocietypublishing.org/content/275/1650/2483.abstract.

229.

Hu, Y., Meng, J., Wang, Y. & Li, C., Large Mesozoic mammals fed on young dinosaurs. Nature 433, 149-152 (2005), http://www.nature.com/nature/journal/v433/n7022/full/nature03102.html.

230.

Kuhnt, W., Holbourn, A. & Moullade, M., Transient global cooling at the onset of early Aptian oceanic anoxic event (OAE) 1a. Geology 39, 323-326 (2011), http://geology.geoscienceworld.org/cgi/content/abstract/39/4/323.

231.

Graziano, R., Sedimentology, biostratigraphy and event stratigraphy of the Early Aptian Oceanic Anoxic Event (OAE1A) in the Apulia Carbonate Platform Margin – Ionian Basin System (Gargano Promontory, southern Italy). Cretaceous Research 39, 78–111 (2011), http://www.sciencedirect.com/science/article/pii/S0195667112001139.

232.

Maurer, F. et al., Late Aptian long-lived glacio-eustatic lowstand recorded on the Arabian Plate. Terra Nova 25, 87–94 (2012), http://onlinelibrary.wiley.com/doi/10.1111/ter.12009/abstract.

233.

Flögel, S. et al., Simulating the biogeochemical effects of volcanic CO2 degassing on the oxygen-state of the deep ocean during the Cenomanian/Turonian Anoxic Event (OAE2). Earth and Planetary Science Letters 305, 371–384 (2011), http://www.sciencedirect.com/science/article/pii/S0012821X11001622.

234.

Turgeon, S. C. & Creaser, R. A., Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature 454, 323-326 (2008), http://www.nature.com/nature/journal/v454/n7202/abs/nature07076.html.

235.

Nejbert, K., Krajewski, K. P., Dubińska, E. & Pécskay, Z., Dolerites of Svalbard, north-west Barents Sea Shelf: age, tectonic setting and significance for geotectonic interpretation of the High-Arctic Large Igneous Province. Polar Research 30 (2011), http://www.polarresearch.net/index.php/polar/article/viewArticle/7306.

236.

Jarvis, I. et al., The Cenomanian–Turonian boundary event and OAE2: marine productivity and climate interactions, presented at EGU General Assembly 2010, Vienna, 2010, http://meetingorganizer.copernicus.org/EGU2010/EGU2010-4888.pdf.

237.

Stromberg, C. A. E., Evolution of Grasses and Grassland Ecosystems. Annual Review of Earth and Planetary Sciences 39, 517–44 (2011), http://www.annualreviews.org/doi/abs/10.1146/annurev-earth-040809-152402.

238.

Prasad, V., Strömberg, C. A., Alimohammadian, H. & Sahni, A., Dinosaur Coprolites and the Early Evolution of Grasses and Grazers. Science 310, 1177-1180 (2005), http://www.sciencemag.org/content/310/5751/1177.abstract.

239.

Wilson, G. P. et al., Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483, 457–460 (2012), http://www.nature.com/nature/journal/v483/n7390/full/nature10880.html.

240.

Voigt, S., Friedrich, O. & Gale, A. S., The Campanian - Maastrichtian (Late Cretaceous) climate transition linked to a global carbon cycle perturbation, presented at Geophysical Research Abstracts, EGU General Assembly 2009, 2009, http://meetingorganizer.copernicus.org/EGU2009/EGU2009-6779-1.pdf.

241.

Spicer, R. A. & Herman, A. B., The Late Cretaceous environment of the Arctic: A quantitative reassessment based on plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 295, 423-442 (2010), http://www.sciencedirect.com/science/article/pii/S0031018210000970.

242.

Davies, A., Kemp, A. E. S. & Pike, J., Late Cretaceous seasonal ocean variability from the Arctic. Nature 460, 254-258 (2009), http://www.nature.com/nature/journal/v460/n7252/full/nature08141.html.

243.

Raitala, J., Ojala, K. & Öhman, T., Kara Crater by Remote Sensing, presented at 34th Annual Lunar and Planetary Science Conference, League City, Texas, 2003, http://www.lpi.usra.edu/meetings/lpsc2003/pdf/1057.pdf.

244.

Self, S., Widdowson, M., Thordarson, T. & Jay, A. E. Earth and Planetary Science Letters 248, 518–532 (2006), http://www.sciencedirect.com/science/article/pii/S0012821X06004523.

245.

Tobin, T. S. et al., Extinction patterns, δ18 O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: Links with Deccan volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology 350–352, 180–188 (2012), http://www.sciencedirect.com/science/article/pii/S0031018212003847.

246.

Schulte, P. et al., The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science 327, 1214-1218 (2010), http://www.sciencemag.org/content/327/5970/1214.abstract.

247.

Jolley, D., Gilmour, I., Gurov, E., Kelley, S. & Watson, J., Two large meteorite impacts at the Cretaceous-Paleogene boundary. Geology 38, 835-838 (2010), http://geology.gsapubs.org/content/38/9/835.short.

248.

Renne, P. R. et al., Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary. Science 339, 684-687 (2013), http://www.sciencemag.org/content/339/6120/684.abstract.

249.

Fang, J., Ancient impact hammered Northern Hemisphere. Nature News (2010), http://www.nature.com/news/2010/100228/full/news.2010.94.html.

250.

Robertson, D. S., Lewis, W. M., Sheehan, P. M. & Toon, O. B., K-Pg extinction: Reevaluation of the heat-fire hypothesis. Journal of Geophysical Research: Biogeosciences 118, 329–336 (2013).

251.

Longrich, N. R., Bhullar, B. A. S. & Gauthier, J. A., Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary. PNAS (2012), http://www.pnas.org/content/early/2012/12/07/1211526110.abstract.

252.

O'Leary, M. A. et al., The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals. Science 339, 662-667 (2013), http://www.sciencemag.org/content/339/6120/662.abstract.

253.

Littler, K., Röhl, U., Westerhold, T. & Zachos, J., A high-resolution benthic stable-isotope record for the South Atlantic: Implications for orbital-scale changes in Late Paleocene–Early Eocene climate and carbon cycling. Earth and Planetary Science Letters 401 (2014), http://www.sciencedirect.com/science/article/pii/S0012821X14003641.

254.

Ganerød, M. et al., The North Atlantic Igneous Province reconstructed and its relation to the Plume Generation Zone: the Antrim Lava Group revisited. Geophysical Journal International 182, 183–202 (2010), http://onlinelibrary.wiley.com/doi/10.1111/j.1365-246X.2010.04620.x/abstract.

255.

Svensen, H., Planke, S. & Corfu, F., Zircon dating ties NE Atlantic sill emplacement to initial Eocene global warming. Journal of the Geological Society, London 167, 433–436 (2010), http://jgs.lyellcollection.org/content/167/3/433.abstract.

256.

Rampino, M., Peraluminous igneous rocks as an indicator of thermogenic methane release from the North Atlantic Volcanic Province at the time of the Paleocene–Eocene Thermal Maximum (PETM). Bulletin of Volcanology 75 (2013), http://link.springer.com/article/10.1007/s00445-012-0678-x.

257.

Aarnes, I., Svensen, H., Connolly, J. A. D. & Podladchikov, Y. Y., How contact metamorphism can trigger global climate changes: Modeling gas generation around igneous sills in sedimentary basins. GEOCHIMICA ET COSMOCHIMICA ACTA 74 (24), 7179-7195 (2010), http://www.sciencedirect.com/science/article/pii/S0016703710005156.

258.

IPCC, 2013 , http://www.ipcc.ch/report/ar5/wg1/.

259.

Holmes, C. D., Prather, M. J., Søvde, O. A. & Myhre, G., Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions. Atmospheric Chemistry and Physics 13, 285-302 (2013), http://www.atmos-chem-phys.net/13/285/2013/acp-13-285-2013.html.

260.

Zeebe, R. E. & Zachos, J. C., Long-term legacy of massive carbon input to the Earth system: Anthropocene vs. Eocene. Philosophical Transactions of The Royal Society A (2013), http://www.soest.hawaii.edu/oceanography/faculty/​zeebe_files/Publications/ZeebeZachosRS13.pdf.

261.

Stassen, P., Thomas, E. & Speijer, R., The progression of environmental changes during the onset of the Paleocene- Eocene thermal maximum (New Jersey Coastal Plain), presented at Climate and Biota of the Early Paleogene edition: 2012, Salzburg, 2012, https://lirias.kuleuven.be/handle/123456789/334641.

262.

Collinson, M. E., Steart, D. C., Scott, A. C., Glasspool, I. J. & Hooker, J. J., Episodic fire, runoff and deposition at the Palaeocene–Eocene boundary. Journal of the Geological Society, London 164, 87–97 (2007), http://jgs.lyellcollection.org/content/164/1/87.full.pdf.

263.

Harrington, G. J. & Jaramillo, C. A., Paratropical floral extinction in the Late Palaeocene–Early Eocene. Journal of the Geological Society 164, 323-332 (2007), http://jgs.lyellcollection.org/content/164/2/323.short.

264.

Secord, R. et al., Evolution of the Earliest Horses Driven by Climate Change in the Paleocene-Eocene Thermal Maximum. Science 335 (2012), http://www.sciencemag.org/content/335/6071/959.short.

265.

Huber, M., A sensitivity to history. Nature Geoscience 6, 15–16 (2012), http://www.nature.com/ngeo/journal/v6/n1/full/ngeo1695.html.

266.

Sluijs, A. et al., Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nature Geoscience 2, 777 - 780 (2009), http://www.nature.com/ngeo/journal/v2/n11/abs/ngeo668.html.

267.

Pross, J. et al., Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488, 73–77 (2012), http://www.nature.com/nature/journal/v488/n7409/full/nature11300.html.

268.

Rust, J. et al., Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. PNAS 107 (2010), http://www.pnas.org/content/107/43/18360.short.

269.

Sexton, P. F. et al., Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature 471, 349–352 (2011), http://www.nature.com/nature/journal/v471/n7338/full/nature09826.html.

270.

DeConto, R. M. et al., Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 484, 87–91 (2012), http://www.nature.com/nature/journal/v484/n7392/full/nature10929.html.

271.

Dobson, K. J., Stuart, F. M. & Dempster, T. J., Constraining the post-emplacement evolution of the Hebridean Igneous Province (HIP) using low-temperature thermochronology: how long has the HIP been cool? Journal of the Geological Society, London 167, 973–984 (2010), http://jgs.lyellcollection.org/content/167/5/973.abstract.

272.

Bryan, S. E. & Ferrari, L., Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years. Geological Society of America Bulletin (2013), http://bulletin.geoscienceworld.org/content/early/2013/04/25/B30820.1.abstract.

273.

Ni, X. et al., The oldest known primate skeleton and early haplorhine evolution. Nature 498, 60–64 (2013), http://www.nature.com/nature/journal/v498/n7452/full/nature12200.html.

274.

Searle, M. P., Elliott, J. R., Phillips, R. J. & Chung, S. L., Crustal-lithospheric structure and continental extrusion of Tibet. Journal of the Geological Society 168, 633–672 (2011), http://jgs.lyellcollection.org/content/168/3/633.short.

275.

Argles, T., Geology on the World's Roof. Geoscientist 21 (3), 12-17 (2011).

276.

Searle, M. P., Simpson, R. L., Law, R. D., Parrish, R. R. & Waters, D. J., The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal–South Tibet. Journal of the Geological Society, London 160, 345–366 (2003), http://jgs.lyellcollection.org/content/160/3/345.abstract.

277.

Güneş, Ü. Y. & Zaybak, A., Does the body temperature change in older people? Journal of Clinical Nursing 17, 2284–2287 (2008), http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2702.2007.02272.x/abstract.

278.

Barke, J. et al., Coeval Eocene blooms of the freshwater fern Azolla in and around Arctic and Nordic seas. Palaeogeography, Palaeoclimatology, Palaeoecology 337 (2012), http://www.sciencedirect.com/science/article/pii/S0031018212001976.

279.

Speelman, E. N. et al., The Eocene Arctic Azolla bloom: environmental conditions, productivity and carbon drawdown. Geobiology 7 (2009), http://onlinelibrary.wiley.com/doi/10.1111/j.1472-4669.2009.00195.x/abstract.

280.

Nawrocki, J., Panczyk, M. & Williams, I. S., Isotopic ages and palaeomagnetism of selected magmatic rocks from King George Island (Antarctic Peninsula). Journal of the Geological Society, London 167, 1063-1079 (2010), http://jgs.lyellcollection.org/content/167/5/1063.abstract.

281.

Allen, M. B. & Armstrong, H. A., Arabia-Eurasia collision and the forcing of mid Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology 265 (1-2), 52-58 (2008), http://www.sciencedirect.com/science/article/pii/S0031018208002642.

282.

Heilmann-Clausen, C., Beyer, C. & Snowball, I., Stratigraphy and paleoenvironment of the Danish Eocene Azolla event, presented at Geophysical Research Abstracts, Vienna, 2010, http://meetingorganizer.copernicus.org/EGU2010/EGU2010-12095.pdf.

283.

Chaimanee, Y. et al., Late Middle Eocene primate from Myanmar and the initial anthropoid colonization of Africa. PNAS 109 (2012), http://www.pnas.org/content/109/26/10293.short.

284.

Hipsley, C. A., Himmelmann, L., Metzler, D. & Müller, J., Integration of Bayesian molecular clock methods and fossil-based soft bounds reveals early Cenozoic origin of African lacertid lizards. BMC Evolutionary Biology 9 (2009), http://www.biomedcentral.com/1471-2148/9/151.

285.

Jaeger, J. J. et al., Late middle Eocene epoch of Libya yields earliest known radiation of African anthropoids. Nature 467, 1095–1098 (2010), http://www.nature.com/nature/journal/v467/n7319/abs/nature09425.html.

286.

Bijl, P. K. et al., Early Palaeogene temperature evolution of the southwest Pacific Ocean. Nature 461, 776-779 (2009), http://www.nature.com/nature/journal/v461/n7265/full/nature08399.html.

287.

Thomas, E., Descent into the Icehouse. Geology 36, 191-192 (2008), http://geology.gsapubs.org/content/36/2/191.full.pdf+html.

288.

Pearson, P. N., Foster, G. L. & Wade, B. S., Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature 461, 1110-1113 (2009), http://www.nature.com/nature/journal/v461/n7267/abs/nature08447.html.

289.

Beerling, D. J. & Royer, D. L., Convergent Cenozoic CO2 history. Nature Geoscience 4, 418-420 (2011), http://www.nature.com/ngeo/journal/v4/n7/abs/ngeo1186.html.

290.

Hassold, N. J. C., Rea, D. K., van der Pluijm, B. A. & Parés, J. M., A physical record of the Antarctic Circumpolar Current: Late Miocene to recent slowing of abyssal circulation. Palaeogeography, Palaeoclimatology, Palaeoecology 275, 28–36 (2009), http://www.sciencedirect.com/science/article/pii/S0031018209000315.

291.

Donnadieu, Y., Bopp, L. & Bellaton, M., On the role of the Drake Passage opening on the marine carbon cycle at the EO boundary, presented at Geophysical Research Abstracts, 2010, http://meetingorganizer.copernicus.org/EGU2010/EGU2010-10780.pdf.

292.

Zeebe, R. E., History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification. Annual Review of Earth and Planetary Sciences 40, 141-165 (2012), http://www.annualreviews.org/doi/abs/10.1146/annurev-earth-042711-105521.

293.

Scher, H. D., Bohaty, S. M., Zachos, J. C. & Delaney, M. L., Two-stepping into the icehouse: East Antarctic weathering during progressive ice-sheet expansion at the Eocene–Oligocene transition. Geology 39, 383-386 (2011), http://geology.gsapubs.org/content/39/4/383.abstract%202011.

294.

Francis, J. E. et al., Chapter 8 From Greenhouse to Icehouse – The Eocene/Oligocene in Antarctica. Developments in Earth and Environmental Sciences 8 - Antarctic Climate Evolution, 309-368 (2008), http://www.sciencedirect.com/science/article/pii/S1571919708000086.

295.

U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Alley R.B., Brigham-Grette J., Miller G.H., Polyak L., and White J.W.C., 2009 , http://www.climatescience.gov/Library/sap/sap1-2/final-report/default.htm.

296.

Houben, A. J., van Mourik, C. A., Montanari, A., Coccioni, R. & Brinkhuis, H., The Eocene–Oligocene transition: Changes in sea level, temperature or both? Palaeogeography, Palaeoclimatology, Palaeoecology 335–336 (2011), http://www.sciencedirect.com/science/article/pii/S0031018211001805.

297.

Hren, M. T. et al., Terrestrial cooling in Northern Europe during the Eocene–Oligocene transition. PNAS 110, 7562–7567 (2013), http://www.pnas.org/content/110/19/7562.abstract.html.

298.

Iggulden, C., Genghis - Birth of An Empire (Bantam Books, 2007), http://www.randomhouse.com/book/85011/​genghis-birth-of-an-empire-by-conn-iggulden.

299.

Edwards, E. J. & Smith, S. A., Phylogenetic analyses reveal the shady history of C4 grasses. PNAS 107, 2532-2537 (2010), http://www.pnas.org/content/107/6/2532.short.

300.

Lu, H., Wang, X. & Li, L., Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia. Geological Society Special Publications - Monsoon evolution and tectonic-climate linkage in Asia 324, 29-44 (2010), http://sp.lyellcollection.org/content/342/1/29.short.

301.

Osborne, C. P. & Sack, L., Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Philosophical Transactions of The Royal Society B 367, 583-600 (2012), http://rstb.royalsocietypublishing.org/content/367/1588/583.short.

302.

Retallack, G. J., Global Cooling by Grassland Soils of the Geological Past and Near Future. Annual Review of Earth and Planetary Sciences 41, 69-86 (2013), http://www.annualreviews.org/doi/abs/10.1146/annurev-earth-050212-124001.

303.

Wikipedia, Popigai crater (2011), http://en.wikipedia.org/wiki/Popigai_crater.

304.

Powars, D. S. & Bruce, T. S., The Effects of the Chesapeake Bay Impact Crater on the Geological Framework and Correlation of Hydrogeologic Units of the Lower York-James Peninsula, Virginia (2000), http://pubs.usgs.gov/pp/p1612/powars.html.

305.

Poag, C. W., The Chesapeake Bay bolide impact: a convulsive event in Atlantic Coastal Plain evolution. Sedimentary Geology 108, 45-90 (1997), http://www.sciencedirect.com/science/article/pii/S0037073896000486.

306.

Siegesmund, S., Fügenschuh, B. & Froitzheim, N., Introduction: analysing orogeny - the Alpine approach. Geological Society, London, Special Publications 298, 1-4 (2008), http://sp.lyellcollection.org/content/298/1/1.extract.

307.

Kidder, D. L. & Worsley, T. R., A human-induced hothouse climate? GSA Today 22, 4-11 (2012), https://rock.geosociety.org/gsatoday/archive/22/2/article/i1052-5173-22-2-4.htm.

308.

Foster, G. L. & Rohling, E. J., Relationship between sea level and climate forcing by CO2 on geological timescales. PNAS 110, 1209-1214 (2013), http://www.pnas.org/content/110/4/1209.short.

309.

Pagani, M. et al., The Role of Carbon Dioxide During the Onset of Antarctic Glaciation. Science 334, 1261-1264 (2011), http://www.sciencemag.org/content/334/6060/1261.short.

310.

Foster, G. L., Lear, C. H. & Rae, J. W. B., The evolution of pCO2, ice volume and climate during the middle Miocene. Earth and Planetary Science Letters 341-44, 243–254 (2012), http://www.sciencedirect.com/science/article/pii/S0012821X12002919.

311.

Fielding, C. R. et al., Sequence stratigraphy of the ANDRILL AND-2A drillcore, Antarctica: A long-term, ice-proximal record of Early to Mid-Miocene climate, sea-level and glacial dynamism. Palaeogeography, Palaeoclimatology, Palaeoecology 305 (1-4), 337-351 (2011), http://www.sciencedirect.com/science/article/pii/S0031018211001507.

312.

Rogers, N. W., Basaltic magmatism and the geodynamics of the East African Rift System. Geological Society, London, Special Publications 259, 77-93 (2006), http://sp.lyellcollection.org/content/259/1/77.short.

313.

Roberts, E. M. et al., Initiation of the western branch of the East African Rift coeval with the eastern branch. Nature Geoscience 5, 289–294 (2012), http://www.nature.com/ngeo/journal/v5/n4/full/ngeo1432.html.

314.

Stevens, N. J. et al., Palaeontological evidence for an Oligocene divergence between Old World monkeys and apes. Nature (2013), http://www.nature.com/nature/journal/vaop/ncurrent/full/nature12161.html.

315.

Gebo, D. L., Malit, N. R. & Nengo, I. O., New proconsuloid postcranials from the early Miocene of Kenya. Primates 50, 311-319 (2009), http://link.springer.com/article/10.1007/s10329-009-0151-4.

316.

Obrebski, M., Allen, R. M., Pollitz, F. & Hung, S.-H., Lithosphere–asthenosphere interaction beneath the western United States from the joint inversion of body-wave traveltimes and surface-wave phase velocities. Geophysical Journal International 185, 1003–1021 (2011), http://onlinelibrary.wiley.com/doi/10.1111/j.1365-246X.2011.04990.x/abstract.

317.

Lipman, P. W. & McIntosh, W. C., Eruptive and noneruptive calderas, northeastern San Juan Mountains, Colorado: Where did the ignimbrites come from? Geological Society of America Bulletin 120, 771-795 (2008), http://gsabulletin.gsapubs.org/content/120/7-8/771.short.

318.

Barry, T. L. et al., New 40Ar/39Ar dating of the Grande Ronde lavas, Columbia River Basalts, USA: Implications for duration of flood basalt eruption episodes. Lithos 118, 213–222 (2010), http://www.sciencedirect.com/science/article/pii/S0024493710000897.

319.

Darold, A. & Humphreys, E., Upper mantle seismic structure beneath the Pacific Northwest: A plume-triggered delamination origin for the Columbia River flood basalt eruptions. Earth and Planetary Science Letters 365, 232–242 (2013), http://www.sciencedirect.com/science/article/pii/S0012821X13000411.

320.

McNulty, K. P., Apes and Tricksters: The Evolution and Diversification of Humans’ Closest Relatives. Evolution: Education and Outreach 3, 322-332 (2010), http://link.springer.com/article/10.1007/s12052-010-0251-z.

321.

Farías, M. et al., Late Miocene high and rapid surface uplift and its erosional response in the Andes of central Chile (33°–35°S). TECTONICS 27 (2008), http://www.agu.org/pubs/crossref/2008/2006TC002046.shtml.

322.

Sakai, T. et al., Climate shift recorded at around 10 Ma in Miocene succession of Samburu Hills, northern Kenya Rift, and its significance. Geological Society, London, Special Publications 342, 109-127 (2010), http://sp.lyellcollection.org/content/342/1/109.abstract.

323.

Cortese, G., Gersonde, R., Hillenbrand, C. D. & Kuhn, G., Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth and Planetary Science Letters 224 (2004), http://www.sciencedirect.com/science/article/pii/S0012821X04003553.

324.

Bienvenu, T. et al., The endocast of Sahelanthropus tchadensis, the earliest known hominid (7 Ma, Chad), presented at The 82nd Annual Meeting of the American Association of Physical Anthropologists (2013), Knoxville, 2013, http://meeting.physanth.org/program/2013/session16/​bienvenu-2013-the-endocast-of-sahelanthropus-tchadensis-the-​earliest-known-hominid-7-ma-chad.html.

325.

Wood, B., Reconstructing human evolution: Achievements, challenges and opportunities. PNAS 107, 8902-8909 (2010), http://www.pnas.org/content/107/Supplement_2/8902.full.

326.

Lovejoy, C. O. et al., Video: Ardipithecus ramidus (2009), http://www.sciencemag.org/site/feature/misc/webfeat/btoy2009/index.xhtml.

327.

Gibbons, A., Breakthrough of the Year Ardipithecus ramidus. Science 326, 1598-1599 (2009), http://www.sciencemag.org/content/326/5960/1598.1.summary.

328.

Jiménez-Moreno, G. et al., Vegetation, sea-level, and climate changes during the Messinian salinity crisis. Geological Society of America Bulletin 125, 432-444 (2012), http://gsabulletin.gsapubs.org/content/125/3-4/432.short.

329.

Krijgsman, W., Stoica, M., Vasiliev, I. & Popov, V. V., Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis. Earth and Planetary Science Letters 290, 183-191 (2010), http://www.sciencedirect.com/science/article/pii/S0012821X09007432.

330.

Govers, R., Meijer, P. & Krijgsman, W., Regional isostatic response to Messinian Salinity Crisis events. Tectonophysics 463, 109–129 (2009), http://www.sciencedirect.com/science/article/pii/S0040195108004654.

331.

Garcia-Castellanos, D. et al., Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 462, 778-781 (2009), http://www.nature.com/nature/journal/v462/n7274/abs/nature08555.html.

332.

Ford, H. L., Ravelo, A. C. & Hovan, S. A., Cooling Subsurface Temperatures in the Eastern Equatorial Pacific during the Pliocene and Linkages to Global Cooling, presented at American Geophysical Union, Fall Meeting 2010, 2010, http://adsabs.harvard.edu/abs/2010AGUFMPP11G.04F.

333.

Pagani, M., Liu, Z., LaRiviere, J. & Ravelo, A. C., High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nature Geoscience 3, 27 - 30 (2009), http://www.nature.com/ngeo/journal/v3/n1/abs/ngeo724.html.

334.

Ward, C. V., Kimbel, W. H. & Johanson, D. C., Complete Fourth Metatarsal and Arches in the Foot of Australopithecus afarensis. Nature 331, 750-753 (2011), http://www.sciencemag.org/content/331/6018/750.abstract.

335.

Green, D. J. & Alemseged, Z., Australopithecus afarensis Scapular Ontogeny, Function, and the Role of Climbing in Human Evolution. Science 338, 514-517 (2012), http://www.sciencemag.org/content/338/6106/514.short.

336.

Brigham-Grette, J. et al., Pliocene Warmth, Polar Amplification, and Stepped Pleistocene Cooling Recorded in NE Arctic Russia. Science 340, 1421-1427 (2013), http://www.sciencemag.org/content/340/6139/1421.abstract.

337.

Lunt, D. J. et al., On the causes of mid-Pliocene warmth and polar amplification. Earth and Planetary Science Letters 321-322, 128–138 (2012), http://www.sciencedirect.com/science/article/pii/S0012821X12000027.

338.

Karas, C. et al., Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow. Nature Geoscience 2, 434 - 438 (2009), http://www.nature.com/ngeo/journal/v2/n6/abs/ngeo520.html.

339.

Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E. & Haywood, A. M., High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 4 (2009), http://www.agu.org/journals/ABS/2009/2008PA001669.shtml.

340.

Riesselmana, C. R. & Dunbarb, R. B., Diatom evidence for the onset of Pliocene cooling from AND-1B, McMurdo Sound, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 369, 136–153 (2013), http://www.sciencedirect.com/science/article/pii/S0031018212005822.

341.

Haywood, A. M. et al., Introduction. Pliocene climate, processes and problems. Philosophical Transactions of the Royal Society A 367, 3-17 (2008), http://rsta.royalsocietypublishing.org/content/367/1886/3.abstract.

342.

Walker, M. & Lowe, J., Quaternary science 2007: a 50-year retrospective. Journal of the Geological Society, London 164, 1073-1092 (2007), http://jgs.lyellcollection.org/content/164/6/1073.short.

343.

Abe-Ouchi, A. et al., Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500, 190–193 (2013), http://www.nature.com/nature/journal/v500/n7461/full/nature12374.html.

344.

Sigman, D. M., Hain, M. P. & Haug, G. H., The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010), http://www.nature.com/nature/journal/v466/n7302/full/nature09149.html.

345.

Hu, A. et al., Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. PNAS (2012), http://www.pnas.org/content/early/2012/04/02/1116014109.abstract.

346.

Centre for Ice and Climate, Neils Bohr Institute, Centre for Ice and Climate, Neils Bohr Institute, http://www.iceandclimate.nbi.ku.dk/research/.

347.

Feakins, S. J. et al., Northeast African vegetation change over 12 my. Geology 41, 295-298 (2013), http://geology.gsapubs.org/content/41/3/295.short.

348.

Jiménez-Moreno, G., Fauquette, S. & Suc, J.-P., Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Review of Palaeobotany and Palynology 162, 403-415 (2010), http://www.sciencedirect.com/science/article/pii/S0034666709001249.

349.

Coulthard, T. J., Ramirez, J. A., Barton, N., Rogerson, M. & Brücher, T., Were Rivers Flowing across the Sahara During the Last Interglacial? Implications for Human Migration through Africa. PloS one 8 (2013), http://www.plosone.org/article/​info%3Adoi%2F10.1371%2Fjournal.pone.​0074834#pone-0074834-g010.

350.

Goff, J., ChaguéGoff, C., Archer, M., DomineyHowes, D. & Turney, C., The Eltanin asteroid impact: possible South Pacific palaeomegatsunami footprint and potential implications for the Pliocene–Pleistocene transition. Journal of Quaternary Science 27, 660–670 (2012), http://onlinelibrary.wiley.com/doi/10.1002/jqs.2571/abstract.

351.

USGS, Fact Sheet 2005-3024: Steam Explosions, Earthquakes, and Volcanic Eruptions—What’s in Yellowstone’s Future? (2005), http://pubs.usgs.gov/fs/2005/3024/.

352.

Magill, C. R., Ashley, G. M. & Freeman, K. H., Ecosystem variability and early human habitats in eastern Africa. PNAS (2012), http://www.pnas.org/content/early/2012/12/20/1206276110.

353.

de la Torre, I., The origins of stone tool technology in Africa: a historical perspective. Philosophical Transactions of the Royal Society B 366, 1028-1037 (2011), http://rstb.royalsocietypublishing.org/content/366/1567/1028.short.

354.

Zipfel, B. et al., The Foot and Ankle of Australopithecus sediba. Science 333, 1417-1420 (2011), http://www.sciencemag.org/content/333/6048/1417.abstract.

355.

Kivell, T. L., Kibii, J. M., Churchill, S. E., Schmid, P. & Berger, L. R., Australopithecus sediba Hand Demonstrates Mosaic Evolution of Locomotor and Manipulative Abilities. Science 333, 1411-1417 (2011), http://www.sciencemag.org/content/333/6048/1411.short.

356.

Pickering, R. et al., Australopithecus sediba at 1.977 Ma and Implications for the Origins of the Genus Homo. Science 333, 1421-1423 (2011), http://www.sciencemag.org/content/333/6048/1421.abstract.

357.

Dennis, M. Y. et al., Evolution of Human-Specific Neural SRGAP2 Genes by Incomplete Segmental Duplication. Cell 149 (4), 912–922 (2012), http://www.sciencedirect.com/science/article/pii/S0092867412004618.

358.

Cerling, T. E. et al., Diet of Paranthropus boisei in the early Pleistocene of East Africa. PNAS 108, 9337-9341 (2011), http://www.pnas.org/content/108/23/9337.short.

359.

Leakey, M. G. et al., New fossils from Koobi Fora in northern Kenya confirm taxonomic diversity in early Homo. Nature 488, 201–204 (2012), http://www.nature.com/nature/journal/v488/n7410/full/nature11322.html.

360.

Berna, F. et al., Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. PNAS 109, E1215-E1220 (2012), http://www.pnas.org/content/109/20/E1215.

361.

Fonseca-Azevedo, K. & Herculano-Houzel, S., Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution. PNAS (2012), http://www.pnas.org/content/early/2012/10/17/1206390109.abstract.

362.

Beyene, Y. et al., The characteristics and chronology of the earliest Acheulean at Konso, Ethiopia. PNAS 110, 1584-1591 (2013), http://www.pnas.org/content/110/5/1584.abstract.

363.

Roach, N. T., Venkadesan, M., Rainbow, M. J. & Lieberman, D. E., Elastic energy storage in the shoulder and the evolution of high-speed throwing in Homo. Nature 498, 483–486 (2013), http://www.nature.com/nature/journal/v498/n7455/full/nature12267.html.

364.

Johansson, S., Constraining the time when language evolved. Linguistics and Philosophical Investigations 10, 45-59 (2011), http://www.ceeol.com/aspx/issuedetails.aspx​?issueid=61d45e0d-387e-46c4-bb31-c127f632c3ee&​articleId=d0247c57-9cef-4e8f-8ef0-22df00fb4a00.

365.

Tollefson, J., Early humans linked to large-carnivore extinctions (2012), http://www.nature.com/news/early-humans-linked-to-large-carnivore-extinctions-1.10508.

366.

Parfitt, S. A. et al., Early Pleistocene human occupation at the edge of the boreal zone in northwest Europe. Nature 466, 229–233 (2010), http://www.nature.com/nature/journal/v466/n7303/abs/nature09117.html.

367.

Ashton, N. et al., Hominin Footprints from Early Pleistocene Deposits at Happisburgh, UK. PloS one 9 (2014), http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0088329.

368.

Roebroeks, W. & Villa, P., On the earliest evidence for habitual use of fire in Europe. PNAS 108, 5209-5214 (2011), http://www.pnas.org/content/108/13/5209.short.

369.

Wilkins, J., Schoville, B. J., Brown, K. S. & Chazan, M., Evidence for Early Hafted Hunting Technology. Science 338, 942-946 (2012), http://www.sciencemag.org/content/338/6109/942.abstract.

370.

Krause, J. et al., The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464, 894-897 (2010), http://www.nature.com/nature/journal/v464/n7290/full/nature08976.html.

371.

Stewart, J. R. & Stringer, C. B., Human Evolution Out of Africa: The Role of Refugia and Climate Change. Science 335, 1317-1321 (2012), http://www.sciencemag.org/content/335/6074/1317.short.

372.

Elhaik, E., Tatarinova, T. V., Klyosov, A. A. & Graur, D., The ‘extremely ancient’ chromosome that isn’t: a forensic bioinformatic investigation of Albert Perry’s X-degenerate portion of the Y chromosome. European Journal of Human Genetics (2014), http://www.nature.com/ejhg/journal/vaop/ncurrent/​full/ejhg2013303a.html.

373.

Marean, C. W. et al., Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449, 905-908 (2007), http://www.nature.com/nature/journal/v449/n7164/abs/nature06204.html.

374.

Marean, C. W., When the Sea Saved Humanity (2010), http://www.scientificamerican.com/article.cfm​?id=when-the-sea-saved-humanity.

375.

Henn, B. M. et al., Hunter-gatherer genomic diversity suggests a southern African origin for modern humans. PNAS 108, 5154-5162 (2011), http://www.pnas.org/content/108/13/5154.abstract.

376.

Brown, K. S. et al., Fire As an Engineering Tool of Early Modern Humans. Science Magazine 325, 859-862 (2009), http://www.sciencemag.org/content/325/5942/859.abstract.

377.

Pringle, H., When Did Humans Begin Hurling Spears? (2013), http://news.sciencemag.org/sciencenow/​2013/05/when-did-humans-begin-hurling-sp.html.

378.

Pearce, E., Stringer, C. & Dunbar, R. I. M., New insights into differences in brain organization between Neanderthals and anatomically modern humans. Proceedings of the Royal Society B 280 (2013), http://rspb.royalsocietypublishing.org/content/280/1758/20130168.

379.

Morin, E. & Laroulandie, V., Presumed Symbolic Use of Diurnal Raptors by Neanderthals. PLOS One 7 (2012), http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0032856.

380.

Sanchez-Quinto, F. et al., North African Populations Carry the Signature of Admixture with Neandertals. PLOS one 7 (2012), http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0047765.

381.

Demay, L., Péan, S. & Patou-Mathis, M., Mammoths used as food and building resources by Neanderthals: Zooarchaeological study applied to layer 4, Molodova I (Ukraine). Quaternary International 276-277 (2012), http://www.sciencedirect.com/science/article/pii/S1040618211006598.

382.

Behar, D. M. et al., The Dawn of Human Matrilineal Diversity. The American Journal of Human Genetics 82, 1130–1140 (2008), http://www.sciencedirect.com/science/article/pii/S0002929708002553.

383.

Smith, J. R. et al., Potential consequences of a Mid-Pleistocene impact event for the Middle Stone Age occupants of Dakhleh Oasis, Western Desert, Egypt. Quaternary International 195, 138-149 (2009), http://www.sciencedirect.com/science/article/pii/S1040618208000219.

384.

Dahl-Jensen, D. et al., Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493, 489–494 (2013), http://www.nature.com/nature/journal/v493/n7433/full/nature11789.html.

385.

O’Leary, M. J. et al., Ice sheet collapse following a prolonged period of stable sea level during the last interglacial. Nature Geoscience 6 (2013), http://www.nature.com/ngeo/journal/v6/n9/full/ngeo1890.html.

386.

Armitage, S. J. et al., The Southern Route “Out of Africa”: Evidence for an Early Expansion of Modern Humans into Arabia. Science 331 (6016), 453-456 (2011), https://www.sciencemag.org/content/331/6016/453.short.

387.

Blinkhorn, J., Achyuthan, H., Petraglia, M. & Ditchfield, P., Middle Palaeolithic occupation in the Thar Desert during the Upper Pleistocene: the signature of a modern human exit out of Africa? Quaternary Science Reviews (2013), http://www.sciencedirect.com/science/article/pii/S0277379113002242.

388.

Sankararaman, S. et al., The genomic landscape of Neanderthal ancestry in present-day humans. Nature (2014), http://www.nature.com/nature/journal/vaop/ncurrent/full/nature12961.html.

389.

Wall, J. D. et al., Higher Levels of Neanderthal Ancestry in East Asians Than in Europeans. Genetics 112 (2013), http://www.genetics.org/content/early/2013/02/04/genetics.112.148213.short.

390.

Reich, D. et al., Denisova Admixture and the First Modern Human Dispersals into Southeast Asia and Oceania. American Journal of Human Genetics 80, 516–528, (2011), http://www.cell.com/AJHG/retrieve/pii/S0002929711003958.

391.

Reich, D. et al., Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010), http://www.nature.com/nature/journal/v468/n7327/full/nature09710.html.

392.

Petersen, S. V., Schrag, D. P. & Clark, P. U., A new mechanism for Dansgaard-Oeschger cycles. Paleoceanography 28, 24–30 (2013), http://onlinelibrary.wiley.com/doi/10.1029/2012PA002364/abstract.

393.

Ziegler, M. et al., Development of Middle Stone Age innovation linked to rapid climate change. Nature Communications 4 (2013), http://www.nature.com/ncomms/journal/v4/n5/full/ncomms2897.html.

394.

Storey, M., Roberts, R. G. & Saidin, M., Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records. PNAS 109 (2012), http://www.pnas.org/content/109/46/18684.short.

395.

Petraglia, M. D., Ditchfield, P., Jones, S., Korisettar, R. & Pal, J. N., The Toba volcanic super-eruption, environmental change, and hominin occupation history in India over the last 140,000 years. Quaternary International 258, 1 (2012), http://www.sciencedirect.com/science/article/pii/S104061821100440X.

396.

Rule, S. et al., The Aftermath of Megafaunal Extinction: Ecosystem Transformation in Pleistocene Australia. Science 335, 1483-1486 (2012), http://www.sciencemag.org/content/335/6075/1483.short.

397.

O’Connor, S., Ono, R. & Clarkson, C., Pelagic Fishing at 42,000 Years Before the Present and the Maritime Skills of Modern Humans. Science 334, 1117-1121 (2011), http://www.sciencemag.org/content/334/6059/1117.short.

398.

Higham, T. et al., The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512 (2014), http://www.nature.com/nature/journal/v512/n7514/full/nature13621.html.

399.

Higham, T. et al., The earliest evidence for anatomically modern humans in northwestern Europe. Nature 479, 521–524 (2011), http://www.nature.com/nature/journal/v479/n7374/full/nature10484.html.

400.

Demeter, F. et al., Anatomically modern human in Southeast Asia (Laos) by 46 ka. PNAS 109, 14375-14380 (2012), http://www.pnas.org/content/109/36/14375.short.

401.

Fu, Q. et al., DNA analysis of an early modern human from Tianyuan Cave, China. PNAS 110, 2223-2227 (2013), http://www.pnas.org/content/110/6/2223.short.

402.

Druzhkova, A. S. et al., Ancient DNA Analysis Affirms the Canid from Altai as a Primitive Dog. PLOS One (2013), http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0057754.

403.

Wu, X. et al., Early Pottery at 20,000 Years Ago in Xianrendong Cave, China. Science 336, 1696-1700 (2012), http://www.sciencemag.org/content/336/6089/1696.short.

404.

Boaretto, E. et al., Radiocarbon dating of charcoal and bone collagen associated with early pottery at Yuchanyan Cave, Hunan Province, China. PNAS 106, 9595-9600 (2009), http://www.pnas.org/content/106/24/9595.short.

405.

Curnoe, D. et al., Human Remains from the Pleistocene-Holocene Transition of Southwest China Suggest a Complex Evolutionary History for East Asians. PLOS One 7 (2012), http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031918.

406.

Nova PBS, 2005 , http://www.pbs.org/wgbh/nova/teachers/activities/pdf/3211_megafloo_02.pdf.

407.

Misarti, N. et al., Early retreat of the Alaska Peninsula Glacier Complex and the implications for coastal migrations of First Americans. Quaternary Science Reviews 48, 1-6 (2012), http://www.sciencedirect.com/science/article/pii/S0277379112002016.

408.

Jones, C., Early humans wiped out Australia's giants (2010), http://www.nature.com/news/2010/100123/full/news.2010.30.html.

409.

dos Santos, R. A. L. et al., Abrupt vegetation change after the Late Quaternary megafaunal extinction in southeastern Australia. Nature Geoscience 6, 627–631 (2013), http://www.nature.com/ngeo/journal/v6/n8/full/ngeo1856.html.

410.

Smith, F. A., Elliott, S. M. & Lyons, S. K., Methane emissions from extinct megafauna. Nature Geoscience 3, 374 - 375 (2010), http://www.nature.com/ngeo/journal/v3/n6/full/ngeo877.html.

411.

Barnosky, A. D., Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. PNAS 105, 11543-11548 (2008), http://www.pnas.org/content/105/Supplement_1/11543.abstract.

412.

Bennington, J. B., 2011 , http://dspace.sunyconnect.suny.edu/handle/1951/48205.

413.

Deschamps, P. et al., Ice-sheet collapse and sea-level rise at the Bølling warming 14,600years ago. Nature 483, 559–564 (2012), http://www.nature.com/nature/journal/v483/n7391/full/nature10902.html.

414.

Van De Mieroop, M., A History of the Ancient Near East, 2nd ed. (Wiley-Blackwell, 2006), http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002132.html.

415.

Wittke, J. H. et al., Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago. PNAS 110 (2013), http://www.pnas.org/content/early/2013/05/17/1301760110.

416.

Petaev, M. I., Huang, S., Jacobsen, S. B. & Zindler, A., Large Pt anomaly in the Greenland ice core points to a cataclysm at the onset of Younger Dryas. PNAS (2013), http://www.pnas.org/content/early/2013/07/17/1303924110.

417.

Bakke, J. et al., Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geoscience 2, 202 - 205 (2009), http://www.nature.com/ngeo/journal/v2/n3/abs/ngeo439.html.

418.

Wu, Y., Sharma, M., LeCompte, M. A., Demitroff, M. N. & Landis, J. D., Origin and provenance of spherules and magnetic grains at the Younger Dryas boundary. PNAS 110 (2013), http://www.pnas.org/content/110/38/E3557.

419.

Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C., A Reconstruction of Regional and Global Temperature for the Past 11,300 Years. Science 339, 1198-1201 (2013), http://www.sciencemag.org/content/339/6124/1198.abstract.

420.

Lewis, C. F. M., Miller, A. A. L., Levac, E., Piper, D. J. W. & Sonnichsen, G. V., Lake Agassiz outburst age and routing by Labrador Current and the 8.2 cal ka cold event. Quaternary International 260, 83–97 (2012), http://www.sciencedirect.com/science/article/pii/S1040618211004836.

421.

Salque, M. et al., Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493, 522–525 (2012), http://www.nature.com/nature/journal/v493/n7433/full/nature11698.html.

422.

Wikipedia, Great Pyramid of Giza (2011), http://en.wikipedia.org/wiki/Great_Pyramid_of_Giza.

423.

Pugach, I., Delfin, F., Gunnarsdóttir, E., Kayser, M. & Stoneking, M., Genome-wide data substantiate Holocene gene flow from India to Australia. PNAS (2013), http://www.pnas.org/content/early/2013/01/09/1211927110.abstract.

424.

Lavigne, F. et al., Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia. PNAS (2013), http://www.pnas.org/content/early/2013/09/26/1307520110.

425.

Miller, G. H. et al., Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophysical Research Letters 39 (2012), http://onlinelibrary.wiley.com/doi/10.1029/2011GL050168/abstract.

426.

Kvasnytsya, V. et al., New evidence of meteoritic origin of the Tunguska cosmic body. Planetary and Space Science 84, 131–140 (2013), http://www.sciencedirect.com/science/article/pii/S0032063313001116.

427.

Zalasiewicz, J., The epoch of humans. Nature Geoscience 6, 8–9 (2012), http://www.nature.com/ngeo/journal/v6/n1/full/ngeo1674.html.

428.

Gerlach, T., Volcanic versus anthropogenic carbon dioxide. Eos, Transactions American Geophysical Union 92, 201–202 (2011), http://onlinelibrary.wiley.com/doi/10.1029/2011EO240001/abstract.

429.

Brennecka, G. A. & Wadhwa, M., Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. PNAS 109 (2012), http://www.pnas.org/content/109/24/9299.abstract.

430.

Spitzer Science Center (SSC), California Institute of Technology, Stellar 'Incubators' Seen Cooking up Stars (2004), http://www.spitzer.caltech.edu/images/1376-ssc2005-02b-Stellar-​Incubators-Seen-Cooking-up-Stars.

431.

Clavin, W. & Harrington, J. D., Herschel Discovers Some of the Youngest Stars Ever Seen (2013), http://www.nasa.gov/mission_pages/herschel/news/herschel20130319.html.

432.

NASA JPL, Spitzer Spectra of Protoplanetary Disks (2004), http://www.spitzer.caltech.edu/images/1172-ssc2004-08b-​Spitzer-Spectra-of-Protoplanetary-Disks.

433.

Russell, C. T. et al., Dawn at Vesta: Testing the Protoplanetary Paradigm. Science 336, 684-686 (2012), http://www.sciencemag.org/content/336/6082/684.

434.

Meyer, C., The Lunar Sample Compendium, http://curator.jsc.nasa.gov/lunar/compendium.cfm.

435.

Zhang, J., Dauphas, N., Davis, A. M., Leya, I. & Fedkin, A., The proto-Earth as a significant source of lunar material. Nature Geoscience 5, 251–255 (2012), http://www.nature.com/ngeo/journal/v5/n4/full/ngeo1429.html.

436.

Saal, A. E., Hauri, E. H., Van Orman, J. A. & Rutherford, M. J., Hydrogen Isotopes in Lunar Volcanic Glasses and Melt Inclusions Reveal a Carbonaceous Chondrite Heritage. Science 340, 1317-1320 (2013), http://www.sciencemag.org/content/340/6138/1317.abstract.

437.

Dickin, A., Radiogenic Isotope Geology, 2nd ed. (Cambridge University Press, 2005), http://www.cambridge.org/us/academic/​subjects/earth-and-environmental-science/​geochemistry-and-environmental-chemistry/​radiogenic-isotope-geology-2nd-edition.

438.

Paniello, R. C., Day, J. M. D. & Moynier, F., Zinc isotopic evidence for the origin of the Moon. Nature 490, 376–379 (2012), http://www.nature.com/nature/journal/v490/n7420/full/nature11507.html.

439.

Dale, C. W. et al., Late Accretion on the Earliest Planetesimals Revealed by the Highly Siderophile Elements. Science 336 (2012), http://www.sciencemag.org/content/336/6077/72.short.

440.

Keller, C. B. & Schoene, B., Statistical Geochemistry reveals a disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature (2012), http://www.nature.com/nature/journal/v485/n7399/full/nature11024.html.

441.

Fassett, C. I. & Minton, D. A., Impact bombardment of the terrestrial planets and the early history of the Solar System. Nature Geoscience 6, 520–524 (2013), http://www.nature.com/ngeo/journal/v6/n7/full/ngeo1841.html.

442.

Tiscareno, M. S. & Malhotra, R., Chaotic diffusion of resonant Kuiper belt objects. The Astronomical Journal 138 (2009), http://iopscience.iop.org/1538-3881/138/3/827.

443.

Matzel, J. E. P. et al., Constraints on the Formation Age of Cometary Material from the NASA Stardust Mission. Science 328, 483-486 (2010), http://www.sciencemag.org/content/328/5977/483.short.

444.

Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A., Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435 (2005), http://www.nature.com/nature/journal/v435/n7041/abs/nature03676.html.

445.

Stewart, S. A., Estimates of yet-to-find impact crater population on Earth. Journal of the Geological Society, London 168, 1–14 (2011), http://jgs.lyellcollection.org/content/168/1/1.abstract.

446.

NASA JPL, NASA Survey Counts Potentially Hazardous Asteroids (2012), http://www.nasa.gov/mission_pages/WISE/news/wise20120516.html

447.

NASA, NASA Near Earth Object Program (2013), http://neo.jpl.nasa.gov/index.html.

448.

Schiermeier, Q., Risk of massive asteroid strike underestimated (2013), http://www.nature.com/news/risk-of-massive-asteroid-strike-underestimated-1.14114.

449.

Erwin, D. H., Bowring, S. A. & Yugan, J., End-Permian mass extinctions: A review. Geological Society of America Special Paper 356, 363–383 (2002), http://specialpapers.gsapubs.org/content/356/363.

450.

Keller, G., in Earth and Life (Springer, 2012), pp. 759-793, http://link.springer.com/chapter/10.1007%2F978-90-481-3428-1_25.

451.

JPL, GPS Time Series (2012), http://sideshow.jpl.nasa.gov/mbh/series.html.

452.

Wegener, A., Die Entstehung der Kontinente. Geologische Rundschau 3, 276-292 (1912), http://link.springer.com/article/10.1007/BF02202896.

453.

Hess, H. H., History of Ocean Basins. Petrologic Studies, 599-820 (1962).

454.

Vine, F. J. & Matthews, D. H., Magnetic Anomalies Over Ocean Ridges. Nature 199, 947-949 (1963), http://www.nature.com/nature/journal/v199/n4897/pdf/199947a0.pdf.

455.

Burke, K. C. & Torsvik, T. H., New results show that the long term stability of Large Low Shear Wave Velocity Provinces (LLSVPs) on the CMB has lasted for at least 540 My, presented at American Geophysical Union, Fall Meeting 2010, San Francisco, 2010, http://adsabs.harvard.edu/abs/2010AGUFMDI21B1959B.

456.

Panet, I. et al., Mapping the mass distribution of Earth/'s mantle using satellite-derived gravity gradients. Nature Geoscience 7 (2014), http://www.nature.com/ngeo/journal/v7/n2/abs/ngeo2063.html.

457.

ESA, Esa's Magnetic Field Mission Swarm, http://www.esa.int/Our_Activities/Observing_the_Earth/​The_Living_Planet_Programme/Earth_Explorers/Swarm/​ESA_s_magnetic_field_mission_Swarm.

458.

French, S., Lekic, V. & Romanowicz, B., Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science 342 (2013), http://www.sciencemag.org/content/342/6155/227.short.

459.

Key, K., Constable, S., Liu, L. & Pommier, A., Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature 495 (2013), http://www.nature.com/nature/journal/v495/n7442/abs/nature11932.html.

460.

Newhall, C., Hendley, J. W. I. & Stauffer, P. H., U.S. Geological Survey Fact Sheet 113-97: The Cataclysmic 1991 Eruption of Mount Pinatubo, Philippines (2005), http://pubs.usgs.gov/fs/1997/fs113-97/.

461.

Chaussard, E. & Amelung, F., Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR. Geophysical Research Letters 39 (2012), http://onlinelibrary.wiley.com/doi/10.1029/2012GL053817/abstract.

462.

Salvage, R. & Neuberg, J. W., Using Seismic Signals to Forecast Volcanic Processes, presented at Geophysical Research Abstracts, Vienna, 2012, http://meetingorganizer.copernicus.org/EGU2012/EGU2012-11009.pdf.

463.

Rohde, R. et al., A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011. Geoinformatics and Geostatistics: An Overview 1 (2012), http://www.scitechnol.com/2327-4581/2327-4581-1-101.php.

464.

Ludlow, F. et al., Medieval Irish chronicles reveal persistent volcanic forcing of severe winter cold events, 431–1649 CE. Environmental Research Letters 8 (2013), http://iopscience.iop.org/1748-9326/8/2/024035/article.

465.

Munich RE, Volcanism - Recent findings on the risk of volcanic eruptions (2013), https://www.munichre.com/touch/naturalhazards/en/naturalhazards/geophysical-hazards/volcanism/introdution/index.html. [login required - free]

466.

Torsvik, T. H. et al., Phanerozoic polar wander, palaeogeography and dynamics. Earth Science Reviews 114, 325–368 (2012), http://www.sciencedirect.com/science/article/pii/S0012825212000797.

467.

Cottrell, E. & Kelley, K. A., Redox Heterogeneity in Mid-Ocean Ridge Basalts as a Function of Mantle Source. Science 340, 1314-1317 (2013), http://www.sciencemag.org/content/340/6138/1314.abstract.

468.

Roberts, N. M. W., Increased loss of continental crust during supercontinent amalgamation. Gondwana Research 21, 994–1000 (2012), http://www.sciencedirect.com/science/article/pii/S1342937X11002176.

469.

Mitchell, R. N., Kilian, T. M. & Evans, D. A. D., Supercontinent cycles and the calculation of absolute palaeolongitude in deep time. Nature 482, 208–211 (2012), http://www.nature.com/nature/journal/v482/n7384/full/nature10800.html.

470.

Jagoutz, O. & Schmidt, M. W., The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth and Planetary Science Letters 371–372, 177–190 (2013), http://www.sciencedirect.com/science/article/pii/S0012821X13001787.

471.

Herzberg, C. et al., Nickel and helium evidence for melt above the core–mantle boundary. Nature 493, 393–397 (2013), http://www.nature.com/nature/journal/v493/n7432/full/nature11771.html.

472.

Coltice, N., Moreira, M., Hernlund, J. & Labrosse, S., Crystallization of a basal magma ocean recorded by Helium and Neon. Earth and Planetary Science Letters 308, 193–199 (2011), http://www.sciencedirect.com/science/article/pii/S0012821X11003384.

473.

Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M. & Scoates, J. S., Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nature geoscience 4, 831–838 (2011), http://www.nature.com/ngeo/journal/v4/n12/abs/ngeo1328.html.

474.

Guha-Sapir, D., Vos, F., Below, R. & Ponserre, S., 2012 , http://www.cred.be/sites/default/files/ADSR_2011.pdf.

475.

Wang, K., Hu, Y. & He, J., Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature 484, 327–332 (2012), http://www.nature.com/nature/journal/v484/n7394/full/nature11032.html.

476.

Toda, S., Stein, R. S., Beroza, G. C. & Marsan, D., Aftershocks halted by static stress shadows. Nature Geoscience 5, 410–413 (2012), http://www.nature.com/ngeo/journal/v5/n6/full/ngeo1465.html.

477.

Weatherley, D. K. & Henley, R. W., Flash vaporization during earthquakes evidenced by gold deposits. Nature Geoscience 6 (2013), http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo1759.html.

478.

Delescluse, M. et al., April 2012 intra-oceanic seismicity off Sumatra boosted by the Banda-Aceh megathrust. Nature 490, 240–244 (2012), http://www.nature.com/nature/journal/v490/n7419/full/nature11520.html.

479.

Scherneck, H. G., A parametrized solid earth tide model and ocean tide loading effects for global geodetic baseline measurements. Geophysical Journal International 106, 677-694 (1991), http://onlinelibrary.wiley.com/doi/10.1111/j.1365-246X.1991.tb06339.x/abstract.

480.

Myers, S., LHC report (18 December 2009) (2009), http://indico.cern.ch/event/76398/.

481.

van Manen, S. M., Kervyn, M., Blake, S. & Ernst, G. G., Apparent tidal influence on magmatic activity at Oldoinyo Lengai volcano, Tanzania, as observed in Moderate resolution Imaging Spectroradiometer (MODIS) data. Journal of Volcanology and Geothermal Research 89, 151–157 (2010), http://www.sciencedirect.com/science/article/pii/S037702730900434X.

482.

Sottili, G. & Palladino, D. M., Tidal modulation of eruptive activity at open-vent volcanoes: evidence from Stromboli, Italy. Terra Nova (2012), http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3121.2012.01059.x/abstract.

483.

Tanaka, S., Tidal triggering of earthquakes precursory to the recent Sumatra megathrust earthquakes of 26 December 2004 (Mw 9.0), 28 March 2005 (Mw 8.6), and 12 September 2007 (Mw 8.5). Geophysical Research Letters 37 (2010), http://www.agu.org/pubs/crossref/2010/2009GL041581.shtml.

484.

Hermann, W. A., Quantifying global exergy resources. Energy 31, 1685–1702 (2006), http://www.sciencedirect.com/science/article/pii/S0360544205001805.

485.

BBC, Nepal and China agree on Mount Everest's height (2010), http://news.bbc.co.uk/2/hi/south_asia/8608913.stm.

486.

National Geographic Society, Everest - Measure of a Mountain (1999), http://www.nationalgeographic.com/features/99/everest/index2.html.

487.

Egli, D. & Mancktelow, N., New structural field data on the timing and kinematics of deformation and exhumation of the Mont Blanc massif, presented at Geophysical Research Abstracts, http://meetingorganizer.copernicus.org/EGU2010/EGU2010-1816.pdf.

488.

Koppe, M. N. & Montgomery, D. R., The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales. Nature Geoscience 2, 644 - 647 (2009), http://www.nature.com/ngeo/journal/v2/n9/abs/ngeo616.html.

489.

Larsen, I. J. & Montgomery, D. R., Landslide erosion coupled to tectonics and river incision. Nature Geoscience (2012), http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo1479.html.

490.

Roberts, N. J. & Evans, S. G., Seymareh (Saidmarreh) landslide, Zagros Mountains, Iran, presented at Geophysical Research Abstracts, 2008, http://meetings.copernicus.org/www.cosis.net/​abstracts/EGU2008/00764/EGU2008-A-00764.pdf.

491.

Plafker, G., Ericksen, G. E. & Concha, J. F., Geological aspects of the May 31, 1970 Peru Earthquake. Bulletin of the Seismological Society of America 61, 543-578 (1971), http://bssa.geoscienceworld.org/content/61/3/543.short.

492.

Weidingera, J. T. & Korup, O., Frictionite as evidence for a large Late Quaternary rockslide near Kanchenjunga, Sikkim Himalayas, India — Implications for extreme events in mountain relief destruction. Geomorphology 103, 57–65 (2009), http://www.sciencedirect.com/science/article/pii/S0169555X08001463.

493.

Weninger, B. et al., The catastrophic final flooding of Doggerland by the Storegga Slide tsunami. Documenta Praehistorica XXXV (2008), http://arheologija.ff.uni-lj.si/documenta/pdf35/weninger35.pdf.

494.

Talling, P. J. et al., Onset of submarine debris flow deposition far from original giant landslide. Nature 450, 541-544 (2007), http://www.nature.com/nature/journal/v450/n7169/full/nature06313.html.

495.

Lipman, P. W., Normark, W. R., Moore, J. G., Wilson, J. B. & Gutmacher, C. E., The Giant Submarine Alika Debris Slide, Mauna Loa, Hawaii. Journal of Geophysical Research 93, 4279-4299 (1988), http://onlinelibrary.wiley.com/doi/10.1029/JB093iB05p04279/abstract.

496.

Newig, J. & Kelletat, D., The North Sea Tsunami of June 5, 1858. Journal of Coastal Research 27, 931-941 (2011), http://www.bioone.org/doi/abs/10.2112/JCOASTRES-D-10-00098.1.

497.

Ward, S. N. & Day, S., Cumbre Vieja Volcano - Potential collapse and tsunami at La Palma, Canary Islands. Geophysical Research Letters 28, 3397-3400 (2001), http://onlinelibrary.wiley.com/doi/10.1029/2001GL013110/abstract.

498.

González, P. J., Tiampo, K. F., Camacho, A. G. & Fernández, J., Shallow flank deformation at Cumbre Vieja volcano (Canary Islands): Implications on the stability of steep-sided volcano flanks at oceanic islands. Earth and Planetary Science Letters 297, 545–557 (2010), http://www.sciencedirect.com/science/article/pii/S0012821X10004449.

499.

Wynn, R., Canary Islands landslides and tidal waves, http://www.noc.soton.ac.uk/gg/research/geohazards/canaries_landslides.php.

500.

Garcia, X. & Jones, A. G., Internal structure of the western flank of the Cumbre Vieja volcano, La Palma, Canary Islands, from land magnetotelluric imaging. Journal of Geophysical Research 115 (2010), http://onlinelibrary.wiley.com/doi/10.1029/2009JB006445/abstract.

501.

Abadie, S. M., Harris, J. C., Grilli, S. T. T. & Fabre, R., Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): tsunami source and near field effects. Journal of Geophysical Research (2012), http://www.agu.org/pubs/crossref/pip/2011JC007646.shtml.

502.

BBC, Mud volcano to stop 'by decade's end' (2013), http://www.bbc.com/news/science-environment-25188259.

503.

Dimitrov, L. I., Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Science Reviews 59, 49-76 (2002), http://www.sciencedirect.com/science/article/pii/S0012825202000697.

504.

Talbot, C. J., Farhadi, R. & Aftabi, P., Potash in salt extruded at Sar Pohl diapir, Southern Iran. Ore Geology Reviews 35, 352–366 (2009), http://www.sciencedirect.com/science/article/pii/S0169136808001005.

505.

European Commission, 2004 , http://ec.europa.eu/research/energy/pdf/waste_disposal_en.pdf.

506.

Pavlenkova, N. I., The Kola Superdeep Drillhole and the nature of seismic boundaries. Terra Nova 4 (1992), http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3121.1992.tb00456.x/abstract.

507.

Zhou, H. & Dick, H. J. B., Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature 494, 195–200 (2013), http://www.nature.com/nature/journal/v494/n7436/full/nature11842.html.

508.

Siegert, M. J. & Dowdeswell, J. A., Numerical reconstructions of the Eurasian Ice Sheet and climate during the Late Weichselian. Quaternary Science Reviews 23, 1273–1283 (2004), http://www.sciencedirect.com/science/article/pii/S0277379103003445.

509.

Simon, K. M., James, T. S., Dyke, A. & Forbes, D. L., Refining Glacial Isostatic Adjustment Models in Northern Canada: Implications for Ice Sheet History, Sea-Level Change, and Land Emergence Along the West Coast of Hudson Bay, presented at American Geophysical Union, Fall Meeting 2011, 2011, http://adsabs.harvard.edu/abs/2011AGUFM.G23B.04S.

510.

Romundset, A., Bondevika, S. & Bennikec, O., Postglacial uplift and relative sea level changes in Finnmark, northern Norway. Quaternary Science Reviews 30, 2398–2421 (2011), http://www.sciencedirect.com/science/article/pii/S027737911100179X.

511.

Scherneck, H. G., Lidberg, M., Haas, R., Johansson, J. M. & Milne, G. A., Fennoscandian strain rates from BIFROST GPS: A gravitating, thick-plate approach. Journal of Geodynamics 50, 19–26 (2010), http://www.sciencedirect.com/science/article/pii/S0264370709001616.

512.

Mazzotti, S., James, T. S., Henton, J. & Adams, J., GPS crustal strain, postglacial rebound, and seismic hazard in eastern North America: The Saint Lawrence valley example. Journal of Geophysical Research 110 (2005), http://www.agu.org/pubs/crossref/2005/2004JB003590.shtml.

513.

Kampman, N. et al., Pulses of carbon dioxide emissions from intracrustal faults following climatic warming. Nature Geoscience 5, 352–358 (2012), http://www.nature.com/ngeo/journal/v5/n5/abs/ngeo1451.html.

514.

BBC, Antarctic's hidden world revealed (2011), http://www.bbc.co.uk/news/science-environment-15735625.

515.

Darwin, C., in On the Origin of Species (1869), pp. 378-381, http://darwin-online.org.uk/content/frameset​?viewtype=text&itemID=F387&pageseq=410.

516.

Oktar, A., Harun Yahya (2012), http://www.harunyahya.com/.

517.

Gallup, Evolution, Creationism, Intelligent Design (2012), http://www.gallup.com/poll/21814/evolution-creationism-intelligent-design.aspx.

518.

The Geological Society of London, Young Earth Creationism, Creation Science and Intelligent Design (2008), http://www.geolsoc.org.uk/creationism.

519.

American Geophysical Union, AGU Position Statement: Biological Evolution and the History of the Earth Are Foundations of Science (2007), http://www.agu.org/sci_pol/positions/evolution.shtml.

520.

The Geological Society of America, The Geological Society of America - Position Statement on Teaching of Evolution (2009), http://www.geosociety.org/positions/position1.htm.

521.

National Academy of Sciences Institute of Medicine, 2008 , http://www.nap.edu/catalog/11876.html.

522.

Apostolides, A., Broadberry, S., Campbell, B., Overton, M. & van Leeuwen, B., 2008 , http://www.basvanleeuwen.net/bestanden/agriclongrun1250to1850.pdf.

523.

Teotónio, H., Chelo, I. M., Bradic, M., Rose, M. R. & Long, A. D., Experimental evolution reveals natural selection on standing genetic variation. Nature Genetics 41, 251 - 257 (2009), http://www.nature.com/ng/journal/v41/n2/full/ng.289.html.

524.

Wright, S. I. & Andolfatto, P., The Impact of Natural Selection on the Genome: Emerging Patterns in Drosophila and Arabidopsis. Annual Review of Ecology, Evolution, and Systematics 39, 193-213 (2008), http://www.annualreviews.org/eprint/​vbsJxy3YSmzEE5zpt4aV/full/10.1146/annurev.ecolsys.39.110707.173342.

525.

Rudolph, B., Gebendorfer, K. M., Buchner, J. & Winter, J., Evolution of Escherichia coli for Growth at High Temperatures. Journal of Biological Chemistry 287, 6150-6158 (2012), http://www.jbc.org/content/285/25/19029.short.

526.

Rhoné, B., Vitalis, R., Goldringer, I. & Bonnin, I., Evolution of flowering time in experimental wheat populations: a comprehensive approach to detect genetic signatures of natural selection. Evolution 64, 2110–2125 (2010), http://onlinelibrary.wiley.com/doi/10.1111/j.1558-5646.2010.00970.x/abstract.

527.

Chen, L. M. et al., In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology 422, 105–113 (2012), http://www.sciencedirect.com/science/article/pii/S0042682211004752.

528.

National Center for Biotechnology Information, Genome (2012), http://www.ncbi.nlm.nih.gov/genome.

529.

Liolios, K. et al., Genomes OnLine Database (GOLD) (2012), http://www.genomesonline.org/cgi-bin/GOLD/index.cgi.

530.

Pennisi, E., ENCODE Project Writes Eulogy for Junk DNA. Science 337, 1159-1161 (2012), http://www.sciencemag.org/content/337/6099/1159.summary.

531.

Magiorkinis, G., Gifford, R. J., Katzourakis, A., De Ranter, J. & Belshaw, R., Env-less endogenous retroviruses are genomic superspreaders. PNAS (2012), http://www.pnas.org/content/early/2012/04/19/1200913109.abstract.

532.

Malfavon-Borja, R., Wu, L. I., Emerman, M. & Malik, H. S., Birth, decay, and reconstruction of an ancient TRIMCyp gene fusion in primate genomes. PNAS (2013), http://www.pnas.org/content/early/2013/01/10/1216542110.abstract.

533.

Whitehouse, M. J., Myers, J. S. & Fedo, C. M., The Akilia Controversy: field, structural and geochronological evidence questions interpretations of >3.8 Ga life in SW Greenland. Journal of the Geological Society 166, 335-348 (2009), http://jgs.lyellcollection.org/content/166/2/335.abstract.

534.

De Gregorio, B. T., Sharp, T. G., Rushdi, A. I. & Simoneit, B. R., in Earliest Life on Earth: Habitats, Environments and Methods of Detection (Springer, 2011), pp. 239-289, http://www.springerlink.com/content/n43v5t231052u848/.

535.

Waldbauer, J. R., Newman, D. K. & Summons, R. E., Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. PNAS 108, 13409–13414 (2011), http://www.pnas.org/content/108/33/13409.short.

536.

Garby, T. J., Walter, M. R., Larkum, A. W. & Neilan, B. A., Diversity of cyanobacterial biomarker genes from the stromatolites of Shark Bay, Western Australia. Environmental Microbiology (2012), http://onlinelibrary.wiley.com/doi/10.1111/j.1462-2920.2012.02809.x/abstract.

537.

D’Anjou, R. M., Bradley, R. S., Balascio, N. L. & Finkelstein, D. B., Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry. PNAS (2012), http://www.pnas.org/content/early/2012/11/21/1212730109.abstract.

538.

Horodyskyj, L. B., White, T. S. & Kump, L. R., Substantial biologically mediated phosphorus depletion from the surface of a Middle Cambrian paleosol. Geology 40, 503-506 (2012), http://geology.gsapubs.org/content/40/6/503.abstract.

539.

Hunt, J. M., in Petroleum Geochemistry and Geology (Freeman, 1996), http://www.amazon.com/Petroleum-Geochemistry-Geology-John-Hunt/dp/0716724413.

540.

Nabbefeld, B., Grice, K., Summons, R. E., Hays, L. E. & Cao, C., Significance of polycyclic aromatic hydrocarbons (PAHs) in Permian/Triassic boundary sections. Applied Geochemistry 25, 1374–1382 (2010), http://www.sciencedirect.com/science/article/pii/S0883292710001460.

541.

Fricke, H. C., Hencecroth, J. & Hoerner, M. E., Lowland–upland migration of sauropod dinosaurs during the Late Jurassic epoch. Nature 480, 513–515 (2011), http://www.nature.com/nature/journal/v480/n7378/full/nature10570.html.

542.

Copeland, S. R. et al., Strontium isotope evidence for landscape use by early hominins. Nature 474, 76–78 (2011), http://www.nature.com/nature/journal/v474/n7349/full/nature10149.html.

543.

Henry, A. G. et al., The diet of Australopithecus sediba. Nature 487 (2012), http://www.nature.com/nature/journal/v487/n7405/full/nature11185.html.

544.

Olney, M., An insight into micropalaeontology - University College London Micropalaeontology Unit (2012), http://www.ucl.ac.uk/GeolSci/micropal/.

545.

Briggs, D. E., Clarkson, E. N. & Aldridge, R. J., The conodont animal. Lethaia 16, 1-14 (1983), http://onlinelibrary.wiley.com/doi/10.1111/j.1502-3931.1983.tb01993.x/abstract.

546.

Rejebian, V. A., Harris, A. G. & Huebner, J. S., Conodont color and textural alteration: An index to regional metamorphism, contact metamorphism, and hydrothermal alteration. Geological Society of America Bulletin 99, 471-479 (1987), http://bulletin.geoscienceworld.org/content/99/4/471.short.

547.

Wang, J., Pfefferkorn, H. W., Zhang, Y. & Feng, Z., Permian vegetational Pompeii from Inner Mongolia and its implications for landscape paleoecology and paleobiogeography of Cathaysia. PNAS (2012), http://www.pnas.org/content/early/2012/02/14/1115076109.abstract.

548.

DiMichele, W. A. & Falcon-Lang, H. J., Pennsylvanian 'fossil forests' in growth position (T0 assemblages): origin, taphonomic bias and palaeoecological insights. Journal of the Geological Society 168, 585-605 (2011), http://jgs.lyellcollection.org/content/168/2/585.full.

549.

Lockley, M. G., Houck, K. J. & Prince, N. K., North America's largest dinosaur trackway site: Implications for Morrison Formation paleoecology. Geological Society of America Bulletin 97, 1163-1176 (1986), http://gsabulletin.gsapubs.org/content/97/10/1163.

550.

Schulp, A. S., Al-Wosabi, M. & Stevens, N. J., First Dinosaur Tracks from the Arabian Peninsula. PLoS ONE 5 (2008), http://www.plosone.org/article/​info%3Adoi%2F10.1371%2Fjournal.pone.0002243.

551.

Centre national de la recherche scientifique, Largest dinosaur footprints ever found discovered near Lyon, France. (2009), http://www2.cnrs.fr/en/1587.htm.

552.

BBC, China dinosaur footprints found in Zhucheng (2010), http://news.bbc.co.uk/2/hi/science/nature/8502076.stm.

553.

University of Arkansas, Large Field of Dinosaur Tracks Uncovered in Southwest Arkansas (2011), http://newswire.uark.edu/article.aspx?id=16922.

554.

Dupras, D. L., Leaflet, 1985 , ftp://ftp.consrv.ca.gov/pub/dmg/pubs/cg/1985/38_07.pdf.

555.

Schopf, J. W., Solution to Darwin’s dilemma: Discovery of the missing Precambrian record of life. PNAS 97, 6947–6953 (2000), http://www.pnas.org/content/97/13/6947.abstract.

556.

De, C., Ediacara fossil assemblage in the upper Vindhyans of Central India and its significance. Journal of Asian Earth Sciences 27, 660–683 (2006), http://www.sciencedirect.com/science/article/pii/S1367912005001422.

557.

Callow, R. H. T. & Brasier, M. D., A solution to Darwin's dilemma of 1859: exceptional preservation in Salter's material. Journal of the Geological Society 166 (2009), http://jgs.lyellcollection.org/content/166/1/1.full.pdf+html.

558.

Yin, L. et al., Doushantuo embryos preserved inside diapause egg cysts. Nature 446 (2007), http://www.nature.com/nature/journal/v446/n7136/full/nature05682.html.

559.

Butterfield, N. J., Exceptional Fossil Preservation and the Cambrian Explosion. Integrative and Comparative Biology 43, 166-177 (2003), http://icb.oxfordjournals.org/content/43/1/166.full.

560.

Ma, X., Hou, X., Edgecombe, G. D. & Strausfeld, N. J., Complex brain and optic lobes in an early Cambrian arthropod. Nature 490, 258–261 (2012), http://www.nature.com/nature/journal/v490/n7419/full/nature11495.html.

561.

Pecoits, E. et al., Bilaterian Burrows and Grazing Behavior at >585 Million Years Ago. Science 336, 1693-1696 (2012), http://www.sciencemag.org/content/336/6089/1693.abstract.

562.

Budd, G. E. & Telford, M. J., The origin and evolution of arthropods. Nature 457 (2009), http://www.nature.com/nature/journal/v457/n7231/full/nature07890.html.

563.

Marriott, S. B., Morrissey, L. B. & Hillier, R. D., Trace fossil assemblages in Upper Silurian tuff beds: Evidence of biodiversity in the Old Red Sandstone of southwest Wales, UK. Palaeogeography, Palaeoclimatology, Palaeoecology 274, 160–172 (2009), http://www.sciencedirect.com/science/article/pii/S0031018209000121.

564.

Filipescu, S. & Street, J., UCL - Trace Fossils (1999), http://www.es.ucl.ac.uk/tf/tracefl.html.

565.

Falkingham, P. L., Bates, K. T. & Mannion, P. D., Temporal and palaeoenvironmental distribution of manus- and pes-dominated sauropod trackways. Journal of the Geological Society 169, 365-370 (2012), http://jgs.lyellcollection.org/content/169/4/365.abstract.

566.

Lomax, D. R. & Racay, C. A., A Long Mortichnial Trackway of Mesolimulus walchi from the Upper Jurassic Solnhofen Lithographic Limestone near Wintershof, Germany. Ichnos 19 (2012), http://www.tandfonline.com/doi/full/10.1080/10420940.2012.702704.

567.

ESRF, A light for Science (2012), http://www.esrf.eu/.

568.

Peñalver, E. et al., Thrips pollination of Mesozoic gymnosperms. PNAS 109, 8623-8628 (2012), http://www.pnas.org/content/109/22/8623.abstract.

569.

ESRF, Scientists discover 356 animal inclusions trapped in 100 million years old opaque amber (2010), http://www.esrf.eu/news/general-old/general-2008/copy_of_amber/amber/.

570.

ESRF, The almost unattainable radula of ammonites (2012), http://www.esrf.eu/UsersAndScience/Publications/Highlights/2011/imaging/ima8.

571.

ESRF, Looking inside fossilised embryos (2010), http://www.esrf.eu/news/spotlight/spotlight40/spotlight40fossils/.

572.

ESRF, Fossil from 160,000 years ago shows growth profile similar to modern man (2010), http://www.esrf.eu/news/general-old/general-2007/homo/.

573.

Dunlop, J. A. et al., A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography. Biology Letters 8 (2011), http://rsbl.royalsocietypublishing.org/content/8/3/457.

574.

Amos, J., Secret 'dino bugs' revealed (2008), http://news.bbc.co.uk/2/hi/science/nature/7324564.stm.

575.

Wogelius, R. A. et al., Trace Metals as Biomarkers for Eumelanin Pigment in the Fossil Record. Science 333, 1622-1626 (2011), http://www.sciencemag.org/content/333/6049/1622.short.

576.

Brasier, M. D. & Antcliffe, J. B., Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. Journal of the Geological Society 166, 363-384 (2009), http://jgs.lyellcollection.org/content/166/2/363.abstract.

577.

Pierce, S. E., Clack, J. A. & Hutchinson, J. R., Three-dimensional limb joint mobility in the early tetrapod Ichthyostega. Nature (2012), http://www.nature.com/nature/journal/vaop/ncurrent/full/nature11124.html.

578.

Smithson, T. R., Wood, S. P., Marshall, J. E. & Clack, J. A., Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer’s Gap. PNAS 109, 4532-4537 (2012), http://www.pnas.org/content/109/12/4532.

579.

Nudds, R. L. & Dyke, G. J., Narrow Primary Feather Rachises in Confuciusornis and Archaeopteryx Suggest Poor Flight Ability. Science 328 (2010), http://www.sciencemag.org/content/328/5980/887.abstract.

580.

Zaher, H. & Scanferla, C. A., The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited. Zoological Journal of the Linnean Society 164, 194–238 (2012), http://onlinelibrary.wiley.com/doi/10.1111/j.1096-3642.2011.00755.x/abstract.

581.

ESRF, X-rays reveal hidden leg of an ancient snake (2012), http://www.esrf.eu/news/general/Snake-with-leg/.

582.

Uhen, M. D., The Origin(s) of Whales. Annual Review of Earth and Planetary Sciences 38, 189-219 (2010), http://www.annualreviews.org/doi/abs/10.1146/annurev-earth-040809-152453.

583.

Cooper, L. N., Thewissen, J. G. M., Bajpai, S. l. & Tiwari, B. N., Postcranial morphology and locomotion of the Eocene raoellid Indohyus (Artiodactyla: Mammalia). Historical Biology 24 (2011), http://www.tandfonline.com/doi/abs/10.1080/08912963.2011.624184.

584.

Hawks, J., Human Evolution: Past and Future (2014), https://class.coursera.org/humanevolution-001.

585.

Lordkipanidze, D. et al., A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early Homo. Science 342, 326-331 (2013), http://www.sciencemag.org/content/342/6156/326.abstract.

586.

Suwa, G., Kono, R. T., Katoh, S., Asfaw, B. & Beyene, Y., A new species of great ape from the late Miocene epoch in Ethiopia. Nature 448, 921-924 (2007), http://www.nature.com/nature/journal/v448/n7156/full/nature06113.html.

587.

Wood, B. & Harrison, T., The evolutionary context of the first hominins. Nature 470, 347–352 (2011), http://www.nature.com/nature/journal/v470/n7334/abs/nature09709.html.

588.

Langergraber, K. E. et al., Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. PNAS (2012), http://www.pnas.org/content/early/2012/08/08/1211740109.abstract.

589.

Clarke, R., in The Paleobiology of Australopithecus (Springer, 2013), pp. 105-123, http://link.springer.com/chapter/10.1007/978-94-007-5919-0_7.

590.

Berger, L. R., The Mosaic Nature of Australopithecus sediba. Science 340, 163-165 (2013), http://www.sciencemag.org/content/340/6129/163.full.

591.

Berger, L. R. et al., Australopithecus sediba: A New Species of Homo-Like Australopith from South Africa. Science 328, 195-204 (2010), http://www.sciencemag.org/content/328/5975/195.short.

592.

Than, K., Surprise Human-Ancestor Find - Key Fossils Hidden in Lab Rock (2012), http://news.nationalgeographic.com/news/2012/07/120712-human-ancestor-​fossils-sediba-science-berger-live/.

593.

Villmoare, B. A. & Kimbel, W. H., CT-based study of internal structure of the anterior pillar in extinct hominins and its implications for the phylogeny of robust Australopithecus. PNAS 108, 16200–16205 (2011), http://www.pnas.org/content/108/39/16200.

594.

Ward, C. V., Tocheri, M. W., Plavcan, J. M., Brown, F. H. & Manthi, F. K., Earliest evidence of distinctive modern human-like hand morphology from West Turkana, Kenya, presented at The 82nd Annual Meeting of the American Association of Physical Anthropologists (2013), Knoxville, 2013, http://meeting.physanth.org/program/2013/​session23/ward-2013-earliest-evidence-​of-distinctive-modern-human-like-hand-morphology-​from-west-turkana-kenya.html.

595.

Ungar, P. S., Krueger, K. L., Blumenschine, R. J., Njau, J. & Scott, R. S., Dental microwear texture analysis of hominins recovered by the Olduvai Landscape Paleoanthropology Project, 1995–2007. Journal of Human Evolution 63, 429–437 (2012), http://www.sciencedirect.com/science/article/pii/S0047248411001084.

596.

Dorey, F., Homo antecessor (2009), http://australianmuseum.net.au/Homo-antecessor/.

597.

Parés, J. M. et al., Reassessing the age of Atapuerca-TD6 (Spain): new paleomagnetic results. Journal of Archaeological Science 40 (2013), http://www.sciencedirect.com/science/article/pii/S0305440313002197.

598.

Stringer, C., The status of Homo heidelbergensis (Schoetensack 1908). Evolutionary Anthropology 21, 101–107 (2012), http://onlinelibrary.wiley.com/doi/10.1002/evan.21311/full.

599.

Hawks, J., Popularity of hominin species names (2014), http://johnhawks.net/.

600.

Pinhasi, R., Higham, T. F. G., Golovanova, L. V. & Doronichev, V. B., Revised age of late Neanderthal occupation and the end of the Middle Paleolithic in the northern Caucasus. PNAS 108, 8611-8616 (2011), http://www.pnas.org/content/108/21/8611.

601.

Wood, R. E. et al., Radiocarbon dating casts doubt on the late chronology of the Middle to Upper Palaeolithic transition in southern Iberia. PNAS (2013), http://www.pnas.org/content/110/8/2781.abstract.

602.

Wood, R. E. et al., A new date for the Neanderthals of El Sidrón Cave (Asturias, Northern Spain). Archaeometry 55, 148–158 (2013), http://onlinelibrary.wiley.com/doi/10.1111/j.1475-4754.2012.00671.x/full.

603.

d'Errico, F., The invisible frontier. A multiple species model for the origin of behavioral modernity. Evolutionary Anthropology: Issues, News, and Reviews 12 (2003), http://onlinelibrary.wiley.com/doi/10.1002/evan.10113/abstract.

604.

Hublin, J. J. et al., Radiocarbon dates from the Grotte du Renne and Saint-Césaire support a Neandertal origin for the Châtelperronian. PNAS 109 (2012), http://www.pnas.org/content/109/46/18743.short.

605.

Groucutt, H. S. & Blinkhorn, J., The Middle Palaeolithic in the desert and its implications for understanding hominin adaptation and dispersal. Quaternary International 300, 1-12 (2013), http://www.sciencedirect.com/science/article/pii/S1040618213001870.

606.

McEvedy, C., The New Penguin Atlas of Ancient History, 2nd ed. (Penguin Books, 2002), http://www.us.penguingroup.com/nf/Book/BookDisplay/​0,9780140513486,00.html​?The_New_Penguin_Atlas_of_Ancient_History_Colin_McEvedy.

607.

National Geographic, National Geographic (2014), http://newswatch.nationalgeographic.com/blog/rising-star-expedition/.

608.

Kim, K. M. & Caetano-Anolles, G., The proteomic complexity and rise of the primordial ancestor of diversified life. BMC Evolutionary Biology 11 (2011), http://www.biomedcentral.com/1471-2148/11/140.

609.

Boussau, B. & Gouy, M., What genomes have to say about the evolution of the Earth. Gondwana Research 21, 483–494 (2012), http://www.sciencedirect.com/science/article/pii/S1342937X11002188.

610.

Zimmer, C., in Darwin 200 Collection (AAAS, 2009), http://membercentral.aaas.org/downloads/science-collection-darwin-200.

611.

Powner, M. W., Gerland, B. & Sutherland, J. D., Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239-242 (2009), http://www.nature.com/nature/journal/v459/n7244/full/nature08013.html.

612.

Vaidya, N. et al., Spontaneous network formation among cooperative RNA replicators. Nature (2012), http://www.nature.com/nature/journal/vaop/ncurrent/full/nature11549.html.

613.

Mayhew, L. E., Ellison, E. T., McCollom, T. M., Trainor, T. P. & Templeton, A. S., Hydrogen generation from low-temperature water–rock reactions. Nature Geoscience 6, 478–484 (2013), http://www.nature.com/ngeo/journal/v6/n6/full/ngeo1825.html.

614.

dos Reis, M. et al., Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proceedings of the Royal Society B 279, 3491–3500 (2012), http://rspb.royalsocietypublishing.org/content/279/1742/3491.abstract.

615.

Steeman, M. E. et al., Radiation of Extant Cetaceans Driven by Restructuring of the Oceans. Systematic Biology 58, 573-585 (2009), http://sysbio.oxfordjournals.org/content/58/6/573.short.

616.

Gibbons, A., Close Encounters of the Prehistoric Kind. Science 328, 680-684 (2010), http://www.sciencemag.org/content/328/5979/680.summary.

617.

Vernot, B. & Akey, J. M., Resurrecting Surviving Neandertal Lineages from Modern Human Genomes. Science 343 (2014), http://www.sciencemag.org/content/343/6174/1017.

618.

Callaway, E., Mystery humans spiced up ancients’ sex lives (2013), http://www.nature.com/news/mystery-humans-spiced-up-ancients-sex-lives-1.14196.

619.

Meyer, M. et al., A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505 (2013), http://www.nature.com/nature/journal/v505/n7483/full/nature12788.html.

620.

Grossman, S. R. et al., A Composite of Multiple Signals Distinguishes Causal Variants in Regions of Positive Selection. Science 327, 883-886 (2010), http://www.sciencemag.org/content/327/5967/883.abstract.

621.

Lander, E. S., Initial impact of the sequencing of the human genome. Nature 470, 187–197 (2011), http://www.nature.com/nature/journal/v470/n7333/abs/nature09792.html.

622.

Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A., Bayesian inference of ancient human demography from individual genome sequences. Nature Genetics 43, 1031–1034 (2011), http://www.nature.com/ng/journal/v43/n10/full/ng.937.html.

623.

Reich, D. et al., Reconstructing Native American population history. Nature 488, 370–374 (2012), http://www.nature.com/nature/journal/v488/n7411/full/nature11258.html.

624.

Achilli, A. et al., Reconciling migration models to the Americas with the variation of North American native mitogenomes. PNAS (2013), http://www.pnas.org/content/early/2013/08/08/1306290110.abstract.html.

625.

Callaway, E., Studies slow the human DNA clock (2012), http://www.nature.com/news/studies-slow-the-human-dna-clock-1.11431.

626.

Meng, J., Wang, Y. & Li, C., Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472, 181–185 (2011), http://www.nature.com/nature/journal/v472/n7342/full/nature09921.html.

627.

Anderson, P. S., Friedman, M., Brazeau, M. D. & Rayfield, E. J., Initial radiation of jaws demonstrated stability despite faunal and environmental change. Nature 476, 206–209 (2011), http://www.nature.com/nature/journal/v476/n7359/full/nature10207.html.

628.

Galis, F., Kundrát, M. & Sinervo, B., An old controversy solved: bird embryos have five fingers. Trends in ecology and evolution 18, 7-9 (2003), http://www.sciencedirect.com/science/article/pii/S0169534702000186.

629.

Graham, A. & Richardson, J., Developmental and evolutionary origins of the pharyngeal apparatus. EvoDevo 3 (2012), http://www.evodevojournal.com/content/3/1/24/abstract.

630.

Dalrymple, G. B., Ancient Earth, Ancient Skies (Stanford University Press, Stanford, 2004), http://www.sup.org/book.cgi?id=4916.

631.

Hutton, J., Theory of the Earth : With Proofs and Illustrations. In Four Parts. Part I. Theory of the Earth; with the Examination of Different Opinions on that Subject, in eight chapters. (1795), http://www2.odl.ox.ac.uk/gsdl/cgi-bin/library?​e=d-000-00---0munahi10--00-0-0-0prompt​-10---4----dcn--0-1l--1-en-50---20-about-James+Hutton--​00001-001-0-1isoZz-8859Zz-1-0&a=d&cl=search&d=munahi010-aer.4.2.4.36.

632.

Winchester, S., The map that changed the world: William Smith and the birth of modern Geology (HarperCollins, 2009), http://www.harpercollins.com/9780061767906/the-map-that-changed-the-world.

633.

USGS, Understanding Plate Motions (2012), http://hvo.wr.usgs.gov/volcanoes/.

634.

Clouard, V. & Bonneville, A., in Plates, Plumes, And Paradigms, Geological Society of America Special Paper 388, edited by Foulger, G. R. (Geological Society of America, 2005), pp. 71-90, http://books.google.com/books?hl=en&lr=&id=0z74GC0rA5kC&oi.

635.

University of Arizona, About Tree Rings (2012), http://ltrr.arizona.edu/about/treerings.

636.

Reimer, P. J. et al., IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0-50,000 Years cal BP. Radiocarbon 54 (2009), https://journals.uair.arizona.edu/index.php/radiocarbon/issue/view/181.

637.

Brunstein, F. C. & Yamaguchi, D. K., The Oldest Known Rocky Mountain Bristlecone Pines (Pinus aristata Engelm.). Arctic and Alpine Research 24, 253-256 (1992), http://www.jstor.org/discover/10.2307/1551666.

638.

Hendy, E. J., Gagan, M. K. & Lough, J. M., Chronological control of coral records using luminescent lines and evidence for non-stationary ENSO teleconnections in northeast Australia. The Holocene 13, 187–199 (2003), http://hol.sagepub.com/content/13/2/187.short.

639.

Neukom, R. & Gergis, J., Southern Hemisphere high-resolution palaeoclimate records of the last 2000 years. The Holocene 22, 501-524 (2012), http://hol.sagepub.com/content/22/5/501.

640.

Ojala, A. E. K., Francus, P., Zolitschka, B., Besonen, M. & Lamoureux, S. F., Characteristics of sedimentary varve chronologies – A review. Quaternary Science Reviews 43, 45–60 (2012), http://www.sciencedirect.com/science/article/pii/S0277379112001473.

641.

Hansen, L. H., Dating by annual layer counting, http://www.iceandclimate.nbi.ku.dk/research/strat_dating/annual_layer_count/.

642.

NOAA, Ice Core Gateway (2012), http://www.ncdc.noaa.gov/paleo/icgate.html.

643.

NOAA, Speleothem (Cave Deposit) Data (2012), http://www.ncdc.noaa.gov/paleo/speleothem.html.

644.

Phillips, T., Sunspot Breakthrough (2011), http://www.nasa.gov/mission_pages/sunearth/news/sunspot-breakthru.html.

645.

Houdek, G. & Gough, D. O., On the seismic age and heavy-element abundance of the Sun. Monthly Notices of the Royal Astronomical Society 418 (2), 1217–1230 (2011), http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2011.19572.x/abstract.

646.

Bonanno, A., Schlattl, H. & Paterno, L., The age of the Sun and the relativistic corrections in the EOS. Astronomy & Astrophysics 390, 1115-1118 (2002), http://www.aanda.org/articles/aa/full/2002/30/aa2598/aa2598.html.

647.

Fairbanks, R. G. et al., Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24, 1781–1796 (2005), http://www.sciencedirect.com/science/article/pii/S0277379105001654.

648.

Renne, P. R., Mundil, R., Balco, G., Min, K. & Ludwig, K. R., Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta 74, 5349–5367 (2010), http://www.sciencedirect.com/science/article/pii/S0016703710003571.

649.

Hiess, J., Condon, D. J., McLean, N. & Noble, S. R., 238U/235U Systematics in Terrestrial Uranium-Bearing Minerals. Science 335, 1610-1614 (2012), http://www.sciencemag.org/content/335/6076/1610.abstract.

650.

USGS, Geochronology (2012), http://geomaps.wr.usgs.gov/common/geochronology.html.

651.

Nakagawa, T. et al., SG06, a fully continuous and varved sediment core from Lake Suigetsu, Japan: stratigraphy and potential for improving the radiocarbon calibration model and understanding of late Quaternary climate changes. Quaternary Science Reviews 36, 164–176 (2012), http://www.sciencedirect.com/science/article/pii/S0277379110004440.

652.

Callaway, E., Archaeology: Date with history (2012), http://www.nature.com/news/archaeology-date-with-history-1.10573.

653.

Dirks, P. H. et al., Geological Setting and Age of Australopithecus sediba from Southern Africa. Science 328, 205-208 (2010), http://www.sciencemag.org/content/328/5975/205.abstract.

654.

International Commission on Stratigraphy, Global chronostratigraphical correlation table for the last 2.7 million years (2010), http://www.stratigraphy.org/upload/QuaternaryChart.pdf.

655.

The National Organization of Test, Research, and Training Reactors, RESEARCH REACTORS OF THE UNITED STATES (2001), http://www.trtr.org/Res_Rx/facilities.html.

656.

White, T. D. et al., Ardipithecus ramidus and the Paleobiology of Early Hominids. Science 326, 75-86 (2009), http://www.sciencemag.org/content/326/5949/64.short.

657.

Herwartz, D. et al., Lu–Hf isotope systematics of fossil biogenic apatite and their effects on geochronology. Geochimica et Cosmochimica Acta 101, 328–343 (2013), http://www.sciencedirect.com/science/article/pii/S0016703712005613.

658.

Shen, C. C. et al., Variation of initial 230Th/232Th and limits of high precision U–Th dating of shallow-water corals. Geochimica et Cosmochimica Acta 72, 4201–4223 (2008), http://www.sciencedirect.com/science/article/pii/S0016703708003736.

659.

McMonagle, L. B. et al., A re-assessment of age dating of fossiliferous limestones in eastern Sabah, Borneo: Implications for understanding the origins of the Indo-Pacific marine biodiversity hotspot. Palaeogeography, Palaeoclimatology, Palaeoecology 305, 28–42 (2011), http://www.sciencedirect.com/science/article/pii/S0031018211000770.

660.

Terada, K. & Sano, Y., In-Situ U–Pb Dating of Apatite by Hiroshima-SHRIMP: Contributions to Earth and Planetary Science. Mass Spectrometry 1 (2012), https://www.jstage.jst.go.jp/article/massspectrometry/1/2/1_A0011/_article.

661.

Balter, V. et al., U–Pb dating of fossil enamel from the Swartkrans Pleistocene hominid site, South Africa. Earth and Planetary Science Letters 267, 236–246 (2008), http://www.sciencedirect.com/science/article/pii/S0012821X07007741.

662.

Daura, J. et al., Stratigraphic context and direct dating of the Neandertal mandible from Cova del Gegant (Sitges, Barcelona). Journal of Human Evolution 59, 109–122 (2010), http://www.sciencedirect.com/science/article/pii/S0047248410000862.

663.

Aubert, M. et al., Confirmation of a late middle Pleistocene age for the Omo Kibish 1 cranium by direct uranium-series dating. Journal of Human Evolution 63, 704–710 (2012), http://www.sciencedirect.com/science/article/pii/S004724841200142X.

664.

Kendall, B. S., Creaser, R. A., Ross, G. M. & Selby, D., Constraints on the timing of Marinoan “Snowball Earth” glaciation by 187Re–187Os dating of a Neoproterozoic, post-glacial black shale in Western Canada. Earth and Planetary Science Letters 222, 729–740 (2004), http://www.sciencedirect.com/science/article/pii/S0012821X04002407.

665.

Deutsch, A. & Schärer, U., Dating terrestrial impact events. Meteorics and Planetary Science 29, 301–322 (2012), http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.1994.tb00595.x/abstract.

666.

West, J. B., Bowen, G. J., Cerling, T. E. & Ehleringer, J. R., Stable isotopes as one of nature's ecological recorders. Trends in Ecology and Evolution 21, 408–414 (2006), http://www.sciencedirect.com/science/article/pii/S0169534706001261.

667.

Sturm, C., Zhang, Q. & Noone, D., An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology. Climate of the Past 6, 115-129 (2010), http://www.clim-past.net/6/115/2010/cp-6-115-2010.html.

668.

Wheeley, J. R., Smith, M. P. & Boomer, I., Oxygen isotope variability in conodonts: implications for reconstructing Palaeozoic palaeoclimates and palaeoceanography. Journal of the Geological Society 169, 239-250 (2012), http://jgs.lyellcollection.org/content/169/3/239.abstract.

669.

Duffy, A. & Imbrie, J., SPECMAP Archive NO.1 - Climate Times Series, Downcore and Core-top Data (2012), http://www.ngdc.noaa.gov/geoportal/catalog/search/resource/​details.page?uuid=%7B34B41A94-F2B5-4FA6-9120-364210BA7443%7D.

670.

NOAA, CLIMAP 120K bp Sediment Data Files - Micropaleontology, Carbonate Percentages, Carbon 14 Age Dates, and Oxygen Isotope Data for 52 Selected Seafloor Cores (2012), http://www.ngdc.noaa.gov/geoportal/catalog/search/resource/​details.page?uuid=%7BE57B57B4-5851-474F-86CB-B4B5447DF1CF%7D.

671.

MARGO, MARGO Multiproxy Approach for the Reconstruction of the Glacial Ocean surface (2011), http://margo.pangaea.de/.

672.

Som, S. M., Catling, D. C., Harnmeijer, J. P., Polivka, P. M. & Buick, R., Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nature 484, 359–362 (2012), http://www.nature.com/nature/journal/v484/n7394/full/nature10890.html.

673.

Rosing, M. T., Bird, D. K., Sleep, N. H. & Bjerrum, C. J., No climate paradox under the faint early Sun. Nature 464, 744-747 (2010), http://www.nature.com/nature/journal/v464/n7289/full/nature08955.html.

674.

Martens, P. C., The Faint Young Sun Paradox, presented at NSSTC Space Science Seminars, 2013, http://solarscience.msfc.nasa.gov/colloquia/​SeminarAbstracts/20130219_Martens.pdf.

675.

Pope, E., personal communication (2012).

676.

Eiler, J. M., Pleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews 30, 3575-3588 (2011), http://www.sciencedirect.com/science/article/pii/S027737911100268X.

677.

IAEA, Global Network of Isotopes in Precipitation (2010), http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html.

678.

Anderson, D. M. et al., Global warming in an independent record of the past 130 years. Geophysical Research Letters 40, 189–193 (2013), http://onlinelibrary.wiley.com/doi/10.1029/2012GL054271/abstract.

679.

Woltering, M. L. et al., Spatial and temporal variability of Crenarchaeota in Lake Superior and implications for the application of the TEX86 temperature proxy, presented at American Geophysical Union, Fall Meeting 2010, 2010, http://adsabs.harvard.edu/abs/2010AGUFMPP41A1609W.

680.

Chen, J. et al., Silicon isotope composition of diatoms as a paleoenvironmental proxy in Lake Huguangyan, South China. Journal of Asian Earth Sciences 45, 268–274 (2012), http://www.sciencedirect.com/science/article/pii/S1367912011004500.

681.

Meng, F. et al., Ediacaran seawater temperature: Evidence from inclusions of Sinian halite. Precambrian Research 184, 63–69 (2011), http://www.sciencedirect.com/science/article/pii/S0301926810002664.

682.

Cronin, T. M. et al., Arctic Ocean Temperature History since 60 ka based on ostracode Mg/Ca ratios, presented at APEX Fifth International Conference and Workshop: Quaternary Glacial and Climate Extremes, Longyearbyen, Svalbard, Norway, 2011, http://su.diva-portal.org/smash/get/diva2:470821/FULLTEXT01#page=22.

683.

Dowsett, H. J. & Robinson, M. M., Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective. Philosophical Transactions of The Royal Society A 367, 109-125 (2009), http://rsta.royalsocietypublishing.org/content/367/1886/109.abstract.

684.

Peterse, F. et al., Revised calibration of the MBT–CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochimica et Cosmochimica Acta 96, 215–229 (2012), http://www.sciencedirect.com/science/article/pii/S0016703712004589.

685.

Olson, I. C., Kozdon, R., Valley, J. W. & Gilbert, P. U., Mollusk Shell Nacre Ultrastructure Correlates with Environmental Temperature and Pressure. Journal of the American Chemical Society 134, 7351−7358 (2012), http://pubs.acs.org/doi/abs/10.1021/ja210808s.

686.

Versteegh, E. A., Black, S., Canti, M. G. & Hodson, M. E., Earthworm-produced calcite granules: a new terrestrial palaeothermometer? Geochimica et Cosmochimica Acta (2013), http://www.sciencedirect.com/science/article/pii/S0016703713003542.

687.

Eagle, R. A. et al., Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite. PNAS 23, 10377-10382 (2010), http://www.pnas.org/content/107/23/10377.short.

688.

Eagle, R. A. et al., Dinosaur Body Temperatures Determined from Isotopic (13C-18O) Ordering in Fossil Biominerals. Science 333, 443-445 (2011), http://www.sciencemag.org/content/333/6041/443.abstract.

689.

Spicer, R. A., CLAMP Online (2012), http://clamp.ibcas.ac.cn/Clampset2.html.

690.

Ohlwein, C. & Wahl, E. R., Review of probabilistic pollen-climate transfer methods. Quaternary Science Reviews 31, 17–29 (2012), http://www.sciencedirect.com/science/article/pii/S0277379111003453.

691.

NOAA, Vostok Ice Core Data (2012), http://www.ncdc.noaa.gov/paleo/icecore/antarctica/vostok/vostok_data.html.

692.

Caillon, N. et al., Estimation of temperature change and of gas age-ice age difference, 108 kyr B.P., at Vostok, Antarctica. Journal of Geophysical Research: Atmospheres 106 (2012), http://onlinelibrary.wiley.com/doi/10.1029/2001JD900145/abstract.

693.

NOAA, The Younger Dryas (2008), http://www.ncdc.noaa.gov/paleo/abrupt/data4.html.

694.

Willerslev, E. et al., Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland. Science 317, 111-114 (2007), http://www.sciencemag.org/content/317/5834/111.long.

695.

Eriksson, P. G. & Cheney, E. S., Evidence for the transition to an oxygen-rich atmosphere during the evolution of red beds in the lower proterozoic sequences of southern Africa. Precambrian Research 54, 257–269 (1992), http://www.sciencedirect.com/science/article/pii/030192689290073W.

696.

Rasmussen, B. & Buick, R., Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27, 115-118 (1999), http://geology.geoscienceworld.org/content/27/2/115.short.

697.

Schopf, J. W., The paleobiological record of photosynthesis. Photosynthesis Research 107, 87-101 (2010), http://link.springer.com/article/10.1007%2Fs11120-010-9577-1.

698.

Kasting, J. F., What caused the rise of atmospheric O2? Chemical Geology (2013), http://www.sciencedirect.com/science/article/pii/S0009254113002568.

699.

Berner, R. A. et al., Isotope Fractionation and Atmospheric Oxygen: Implications for Phanerozoic O2 Evolution. Science 287, 1630-1633 (2000), http://www.sciencemag.org/content/287/5458/1630.full.

700.

Kanzaki, Y. & Murakami, T., Rate law of Fe(II) oxidation under low O2 conditions. Geochimica et Cosmochimica Acta (2013), http://www.sciencedirect.com/science/article/pii/S0016703713003487.

701.

Xu, L. et al., Mo isotope and trace element patterns of Lower Cambrian black shales in South China: Multi-proxy constraints on the paleoenvironment. Chemical Geology 318-319, 45–59 (2012), http://www.sciencedirect.com/science/article/pii/S0009254112002355.

702.

Partin, C. A. et al., Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth and Planetary Science Letters 369-370, 284–293 (2013), http://www.sciencedirect.com/science/article/pii/S0012821X13001520.

703.

Schmiedl, G. et al., Climatic forcing of eastern Mediterranean deep-water formation and benthic ecosystems during the past 22 000 years. Quaternary Science Reviews 29, 3006–3020 (2010), http://www.sciencedirect.com/science/article/pii/S0277379110002416.

704.

Tans, P. & Keeling, R., Trends in Atmospheric Carbon Dioxide (2012), http://www.esrl.noaa.gov/gmd/ccgg/trends/#mlo_full.

705.

Pagani, M., The alkenone-CO2 proxy and ancient atmospheric carbon dioxide. Philosophical Transactions of The Royal Society A 360, 609-632 (2002), http://rsta.royalsocietypublishing.org/content/360/1793/609.short.

706.

Henderiks, J. & Pagani, M., Refining ancient carbon dioxide estimates: Significance of coccolithophore cell size for alkenone-based pCO2 records. PALEOCEANOGRAPHY 22 (2007), http://www.agu.org/pubs/crossref/2007/2006PA001399.shtml.

707.

Rickaby, R. E. M., Henderiks, J. & Young, J. N., Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species. Climate of the Past 6, 771-785 (2010), http://www.clim-past.net/6/771/2010/cp-6-771-2010.html.

708.

Hannisdal, B., Henderiks, J. & Liow, L. H., Long-term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO2. Global Change Biology 18, 3504–3516 (2012), http://onlinelibrary.wiley.com/doi/10.1111/gcb.12007/abstract.

709.

Schrag, D. P., Higgins, J. A., Macdonald, F. A. & Johnston, D. T., Authigenic Carbonate and the History of the Global Carbon Cycle. Science 339, 540-543 (2013), http://www.sciencemag.org/content/339/6119/540.abstract.

710.

Seki, O. et al., Alkenone and boron-based Pliocene pCO2 records. Earth and Planetary Science Letters 292, 201–211 (2010), http://www.sciencedirect.com/science/article/pii/S0012821X10000816.

711.

Kurschner, W. M., Kvacek, Z. & Dilcher, D. L., The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. PNAS 105, 449-453 (2008), http://www.pnas.org/content/105/2/449.full.

712.

Haworth, M., Elliott-Kingston, C. & McElwain, J. C., The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers. Oecologia 167, 11-19 (2011), http://link.springer.com/article/10.1007%2Fs00442-011-1969-1.

713.

Breecker, D., Improving paleosol carbonate based estimates of ancient atmospheric CO2 (2010), http://www.geochemsoc.org/publications/geochemicalnews/gn144sep10/improvingpaleosolcarbonate/.

714.

Pack, A., Gehler, A. & Süssenberger, A., Exploring the usability of isotopically anomalous oxygen in bones and teeth as paleo-CO2-barometer. Geochimica et Cosmochimica Acta 102 (2012), http://www.sciencedirect.com/science/article/pii/S0016703712005935.

715.

Montanez, I. P., Modern soil system constraints on reconstructing deep-time atmospheric CO2. Geochimica et Cosmochimica Acta 101, 57–75 (2013), http://www.sciencedirect.com/science/article/pii/S0016703712005881.

716.

Finlay, A. J., Selby, D. & Gröcke, D. R., Tracking the Hirnantian glaciation using Os isotopes. Earth and Planetary Science Letters 293, 339–348 (2010), http://www.sciencedirect.com/science/article/pii/S0012821X10001603.

717.

LaRiviere, J. P. et al., Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486, 97–100 (2012), http://www.nature.com/nature/journal/v486/n7401/abs/nature11200.html.

718.

Parrenin, F. et al., Synchronous Change of Atmospheric CO2 and Antarctic Temperature During the Last Deglacial Warming. Science 339, 1060-1063 (2013), http://www.sciencemag.org/content/339/6123/1060.

719.

Pedro, J. B., Rasmussen, S. O. & van Ommen, T. D., Tightened constraints on the time-lag between Antarctic temperature and CO2 during the last deglaciation. Climate of the Past 8, 1213-1221 (2012), http://www.clim-past.net/8/1213/2012/cp-8-1213-2012.html.

720.

Shakun, J. D. et al., Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012), http://www.nature.com/nature/journal/v484/n7392/full/nature10915.html.

721.

Meckler, A. N. et al., Deglacial pulses of deep-ocean silicate into the subtropical North Atlantic Ocean. Nature 495 (2013), http://www.nature.com/nature/journal/v495/n7442/full/nature12006.html.

722.

National Research Council, Workshop Report, 2012 , http://www.nap.edu/catalog.php?record_id=13519.

723.

Büntgen, U. et al., Filling the Eastern European gap in millennium-long temperature reconstructions. PNAS 110, 1773-1778 (2013), http://www.pnas.org/content/110/5/1773.full.pdf+html.

724.

McKee, M., Cosmic rays originate from supernova shockwaves (2013), http://www.nature.com/news/cosmic-rays-originate-from-supernova-shockwaves-1.12436.

725.

Wang, S. et al., Midlatitude atmospheric OH response to the most recent 11-y solar cycle. PNAS 110, 2023-2028 (2013), http://www.pnas.org/content/110/6/2023.abstract.

726.

Hansen, J., Sato, M., Kharecha, P. & Schuckmann, K. V., Earth's energy imbalance and implications. Atmospheric Chemistry and Physics 11 (2011), http://www.atmos-chem-phys.net/11/13421/2011/acp-11-13421-2011-relations.html.

727.

Andrews, S. D., Trewin, N. H., Hartley, A. J. & Weedon, G. P., Solar variance recorded in lacustrine deposits from the Devonian and Proterozoic of Scotland. Journal of the Geological Society 167 (2010), http://jgs.lyellcollection.org/content/167/5/847.abstract.

728.

Hambaryan, V. V. & Neuhäuser, R., A Galactic short gamma-ray burst as cause for the 14C peak in AD 774/5. Monthly Notes of The Royal Astronomical Society (2013), http://mnras.oxfordjournals.org/content/early/2013/01/08/mnras.sts378.full.

729.

Thomas, B. C., Melott, A. L., Arkenberg, K. R. & Snyder, B. R., Terrestrial effects of possible astrophysical sources of an AD 774-775 increase in 14C production. Geophysical Research Letters (2013), http://onlinelibrary.wiley.com/doi/10.1002/grl.50222/abstract.

730.

Lovett, R. A., Ancient text gives clue to mysterious radiation spike (2012), http://www.nature.com/news/ancient-text-gives-clue-to-​mysterious-radiation-spike-1.10898.

731.

Schmitt, J., Seth, B., Köhler, P., Willenbring, J. K. & Fischer, H., A new ice core proxy of continental weathering and its feedback with atmospheric CO2, presented at Geophysical Research Abstracts, Vienna, 2012, http://meetingorganizer.copernicus.org/EGU2012/EGU2012-7177.pdf.

732.

Hu, C. et al., Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth and Planetary Science Letters 266, 221–232 (2008), http://www.sciencedirect.com/science/article/pii/S0012821X07006334.

733.

Donnelly, J. P. & Woodruff, J. D., Intense hurricane activity over the past 5,000 years controlled by El Niño and the West African monsoon (2008), http://www.ncdc.noaa.gov/paleo/pubs/donnelly2007/donnelly2007.html.

734.

NOAA, Climate Reconstructions (2012), http://www.ncdc.noaa.gov/paleo/recons.html.

735.

NOAA, Paleoclimatology Slide Sets (2004), http://www.ncdc.noaa.gov/paleo/slides/slideset/index.html#packrat.

736.

Harris, A. G., Tuttle, E. & Tuttle, S. D., Geology of National Parks, 5th ed. (Kendall Hunt, 1995), http://www.kendallhunt.com/harris-tuttle/.

737.

Lyell, C., Principles of Geology: Being an Attempt to Explain the Former Changes of the Earth's Surface by Reference toCauses Now in Operation, 2nd ed. (J Murray, 1832), http://books.google.com/books?id=mmIOAAAAQAAJ.

738.

Willcox, G., Buxo, R. & Herveux, L., Late Pleistocene and early Holocene climate and the beginnings of cultivation in northern Syria. The Holocene 19, 151-158 (2009), http://hol.sagepub.com/content/19/1/151.short.

739.

USGS, Magnitude 9.0 Sumatra-Andaman Islands Earthquake FAQ (2011), http://earthquake.usgs.gov/earthquakes/eqinthenews/2004/us2004slav/faq.php.

740.

Wikipedia, Tsar Bomba (2013), http://en.wikipedia.org/wiki/Tsar_Bomba.

741.

Butler, J. H., THE NOAA ANNUAL GREENHOUSE GAS INDEX (AGGI) (2014), http://www.esrl.noaa.gov/gmd/aggi/.

742.

Pew Research Center, Climate Change: Key Data Points from Pew Research (2013), http://www.pewresearch.org/key-data-points/​climate-change-key-data-points-from-pew-research/.

743.

Met Office, How has our climate changed? (2012), http://www.metoffice.gov.uk/climate-change/guide/how#Increasing-temperatures.

744.

Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D., Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. Journal of Geophysical Research: Atmospheres 117 (2012), http://onlinelibrary.wiley.com/doi/10.1029/2011JD017187/abstract.

745.

Balmaseda, M. A., Trenberth, K. E. & Källén, E., Distinctive climate signals in reanalysis of global ocean heat content. Geophysical Research Letters (2013), http://onlinelibrary.wiley.com/doi/10.1002/grl.50382/abstract.

746.

Hawkins, E., Updated comparison of simulations and observations (2013), http://www.climate-lab-book.ac.uk/2013/​updated-comparison-of-simulations-and-observations/#more-1104.

747.

Perovich, D., Meier, W., Tschudi, M., Gerland, S. & Richter-Menge, J., Arctic Report Card - Sea Ice (2012), http://www.arctic.noaa.gov/reportcard/sea_ice.html.

748.

Shepherd, A. et al., A Reconciled Estimate of Ice-Sheet Mass Balance. Science 338, 1183-1189 (2012), http://www.sciencemag.org/content/338/6111/1183.short.

749.

CSIRO, Historical Sea Level Changes (2013), http://www.cmar.csiro.au/sealevel/sl_hist_last_15.html.

750.

Pierce, D. W., Gleckler, P. J., Barnett, T. P., Santer, B. D. & Durack, P. J., The fingerprint of human-induced changes in the ocean's salinity and temperature fields. Geophysical Research Letters 39 (2012), http://onlinelibrary.wiley.com/doi/10.1029/2012GL053389/abstract.

751.

Vázquez-Rodríguez, M., Pérez, F. F., Velo, A., Ríos, A. F. & Mercier, H., Observed trends of anthropogenic acidification in North Atlantic water masses. Biogeosciences 9, 3003-3030 (2012), http://www.biogeosciences-discuss.net/9/3003/2012/bgd-9-3003-2012.html.

752.

Riebesell, U., A steep learning curve. Nature Geoscience 6, 12–13 (2012), http://www.nature.com/ngeo/journal/v6/n1/full/ngeo1690.html.

753.

Bednaršek, N. et al., Extensive dissolution of live pteropods in the Southern Ocean. Nature Geoscience 5, 881–885 (2012), http://www.nature.com/ngeo/journal/v5/n12/full/ngeo1635.html.

754.

EPA, Climate Change Impacts and Adapting to Change (2012), http://www.epa.gov/climatechange/impacts-adaptation/.

755.

Hansen, J., Sato, M. & Ruedy, R., Perception of climate change. PNAS 109 (2012), http://www.pnas.org/content/109/37/E2415.short.

756.

Xu, L. et al., Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change 3 (2013), http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate1836.html.

757.

The Economist, Up to eleven: An uncomfortable time for Australians, especially climate-change sceptics (2013), http://www.economist.com/news/asia/21569440-uncomfortable-time-​australians-especially-climate-change-sceptics-up-eleven.

758.

Catovsky, S., Protecting London from current and future flood risks (2011), http://www.theccc.org.uk/blog/​protecting-london-from-current-and-future-flood-risks/.

759.

Muller, R., Has Global Warming Stopped? (2013), http://static.berkeleyearth.org/memos/has-global-warming-stopped.pdf.

760.

Guemas, V., Doblas-Reyes, F. J., Andreu-Burillo, I. & Asif, M., Retrospective prediction of the global warming slowdown in the past decade. Nature Climate Change 3, 649–653 (2013), http://www.nature.com/nclimate/journal/v3/n7/full/nclimate1863.html.

761.

Met Office, 2013 , http://www.metoffice.gov.uk/research/news/recent-pause-in-warming.

762.

NOAA, Global Analysis - Annual 2012 (2012), http://www.ncdc.noaa.gov/sotc/global/2012/13.

763.

NOAA, Global Analysis - Annual 2013 (2013), http://www.ncdc.noaa.gov/sotc/global/2013/13.

764.

NOAA, 2013 , http://www.climate.gov/news-features/understanding-climate/​state-climate-2012-highlights.

765.

Dixon, H., Global warming? No, actually we're cooling, claim scientists (2013), http://www.telegraph.co.uk/earth/environment/​climatechange/10294082/Global-warming-No-actually-​were-cooling-claim-scientists.html.

766.

NSIDC, Arctic Sea Ice News and Analysis (2013), http://nsidc.org/arcticseaicenews/.

767.

Lacis, A. A., Schmidt, G. A., Rind, D. & Ruedy, R. A., Atmospheric CO2: Principal Control Knob Governing Earth’s Temperature. Science 330, 356-359 (2010), http://www.sciencemag.org/content/330/6002/356.short.

768.

AGU, WATER VAPOR in the CLIMATE SYSTEM Special Report. December 1995, presented at AGU Chapman Conference on Water Vapor in the Climate System held October 25-28, 1994, at Jekyll Island, Georgia, 1995, http://www.eso.org/gen-fac/pubs/astclim/espas/pwv/mockler.html.

769.

Hausfather, Z., The Water Vapor Feedback (2008), http://www.yaleclimatemediaforum.org/2008/02/​common-climate-misconceptions-the-water-vapor-feedback-2/.

770.

Dessler, A. E., Zhang, Z. & Yang, P., Water-vapor climate feedback inferred from climate fluctuations, 2003–2008. Geophysical Research Letters 35 (2008), http://onlinelibrary.wiley.com/doi/10.1029/2008GL035333/abstract.

771.

Del Genio, A. D., The Dust Settles on Water Vapor Feedback. Science 296, 665-666 (2002), http://www.sciencemag.org/content/296/5568/665.short.

772.

The Royal Society, 2010 , http://royalsociety.org/policy/publications/2010/​climate-change-summary-science/.

773.

EPA, 2012 , http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html.

774.

International Energy Agency, 2007 , http://www.iea.org/publications/freepublications/​publication/tracking_emissions.pdf.

775.

Scripps Institution of Oceanography, Scripps O2 Global Oxygen Measurements (2013), http://scrippso2.ucsd.edu/.

776.

Marcos, M. & Amores, A., Quantifying anthropogenic and natural contributions to thermosteric sea level rise. Geophysical Research Letters 41 (2014), http://onlinelibrary.wiley.com/doi/10.1002/2014GL059766/abstract.

777.

Shapiro, A. I. et al., A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astronomy and Astrophysics 529 (2011), http://www.aanda.org/articles/aa/abs/2011/05/aa16173-10/aa16173-10.html.

778.

Gibbs, P. et al., 2013 , http://www.senseaboutscience.org/resources.php/127/.

779.

Anderegg, W. R., Prall, J. W., Harold, J. & Schneider, S. H., Expert credibility in climate change. PNAS 107, 12107-12109 (2010), http://www.pnas.org/content/107/27/12107.short.

780.

Geological Society of London, Climate change: evidence from the geological record (2010), http://www.geolsoc.org.uk/en/Policy%20and%20Media/​Policy%20and%20Position%20Statements/​Climate%20change%20evidence%20from%20the%20geological%20record.

781.

AGU, Humans Impact Climate, and the Scientific Community has the Responsibility to Educate and Communicate the Implications of Climate Change to the Public and Policy Makers (2012), http://www.agu.org/sci_pol/pdf/position_statements/AGU_Climate_Statement.pdf.

782.

The Geological Society of America, Climate Change (2010), http://www.geosociety.org/positions/pos10_climate.pdf.

783.

National Academy of Sciences, America's Climate Choices (2011) (2011), http://dels.nas.edu/Report/Americas-Climate-Choices/12781.

784.

CSIRO, Climate Change, http://www.csiro.au/en/Outcomes/Climate.aspx.

785.

AAAS, AAAS Reaffirms Statements on Climate Change and Integrity (2009), http://www.aaas.org/news/releases/2009/1204climate_statement.shtml.

786.

American Chemical Society, Global Climate Change, http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_SUPERARTICLE&node_id=1907.

787.

American Physical Society, National Policy 07.1 CLIMATE CHANGE (2010), http://www.aps.org/policy/statements/07_1.cfm.

788.

American Meteorological Society, Climate Change An Information Statement of the American Meteorological Society (2012), http://www.ametsoc.org/policy/2012climatechange.html.

789.

NASA, Consensus: 97% of climate scientists agree, http://climate.nasa.gov/scientific-consensus.

790.

EPA, Climate Change Basics (2012), http://www.epa.gov/climatechange/basics/.

791.

National Center for Atmospheric Research, Global warming & climate change - frequently asked questions, https://www2.ucar.edu/climate/faq#t2509n1355.

792.

Canadian Meteorological and Oceanographic Society, Position Statement on Climate Change (2002), http://www.cmos.ca/climatechangepole.html.

793.

Joint science academies, Joint Science Academies’ Statement: Climate Change Adaptation and the Transition to a Low Carbon Society, http://www.nationalacademies.org/includes/G8+5energy-climate09.pdf.

794.

Australian Academy of Science, A submission to the Senate Select Committee on Climate Policy (2009), http://www.science.org.au/reports/documents/​AAS%20submission%20cover%20letter%20and%20Senate%20​select%20on%20climate%20policy.pdf.

795.

National Development and Reform Commission, Peoples Republic of China, China’s National Climate Change Programme (2007), http://www.ccchina.gov.cn/WebSite/CCChina/UpFile/File188.pdf.

796.

Ministry of Environment and Forests, India’s Position on Climate Change issues (2009), http://pib.nic.in/newsite/erelease.aspx?relid=49738.

797.

DuPont, DuPont Position Statement on Climate Change (2011), http://www2.dupont.com/media/en-us/news-events/insights/climate-change.html.

798.

Oreskes, N. & Conway, E. M., Merchants of Doubt: How a handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming (Bloomsbury Press, New York, 2010), http://www.bloomsbury.com/us/merchants-of-doubt-9781608192939/.

799.

Goldenberg, S., Secret funding helped build vast network of climate denial thinktanks (2013), http://www.guardian.co.uk/environment/2013/​feb/14/funding-climate-change-denial-thinktanks-network.

800.

Kysar, D., Supreme Court ruling is good, bad and ugly (2011), http://www.nature.com/news/2011/110621/full/474421a.html.

801.

Pielke, R. J., The Climate Fix (Basic Books, 2010), http://search.perseusbooksgroup.com/book/paperback/the-climate-fix/9780465025190.

802.

Black, R., CRU climate scientists "did not withhold data" (2010), http://www.bbc.co.uk/news/10538198.

803.

Oxburgh, R. et al., 2010 , http://www.uea.ac.uk/mac/comm/media/press/CRUstatements/SAP.

804.

EPA, EPA Rejects Claims of Flawed Climate Science (2010), http://yosemite.epa.gov/opa/admpress.nsf/0/​56EB0D86757CB7568525776F0063D82F.

805.

House of Commons Science and Technology Committee, 2011 , http://www.parliament.uk/business/committees/​committees-a-z/commons-select/science-and-technology-committee/​news/110125-report-published---uea/.

806.

Black, R., Police end "ClimateGate" inquiry (2012), http://www.bbc.co.uk/news/science-environment-18885500.

807.

McPhaden, M., AGU Responds to Op-ed entitled "No Need to Panic about Global Warming," published by The Wall Street Journal, 27 January 2012 (2012), http://www.agu.org/news/features/2012-2-3_AGU-responds.shtml.

808.

Tzedakis, P. C., Channell, J. E., Hodell, D. A., Kleiven, H. F. & Skinner, L. C., Determining the natural length of the current interglacial. Nature Geoscience 5, 138–141 (2012), http://www.nature.com/ngeo/journal/v5/n2/full/ngeo1358.html.

809.

D’Andrea, W. J. et al., Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology (2012), http://geology.gsapubs.org/content/early/2012/09/18/G33365.1.abstract.

810.

Ahmed, M. et al., Continental-scale temperature variability during the past two millennia. Nature Geoscience 6, 339–346 (2013), http://www.nature.com/ngeo/journal/v6/n5/full/ngeo1797.html.

811.

Wang, T., Surge, D. & Mithen, S., Seasonal temperature variability of the Neoglacial (3300–2500 BP) and Roman Warm Period (2500–1600 BP) reconstructed from oxygen isotope ratios of limpet shells (Patella vulgata), Northwest Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology 317-318, 104–113 (2012), http://www.sciencedirect.com/science/article/pii/S0031018211006080.

812.

Wang, T., Surge, D. & Walker, K. J., Seasonal climate change across the Roman Warm Period/Vandal Minimum transition using isotope sclerochronology in archaeological shells and otoliths, southwest Florida, USA. Quaternary International (2012), http://www.sciencedirect.com/science/article/pii/S1040618212033241.

813.

NOAA, The Mid-Holocene "Warm Period" (2008), http://www.ncdc.noaa.gov/paleo/globalwarming/holocene.html.

814.

Vaks, A. et al., Speleothems Reveal 500,000-Year History of Siberian Permafrost. Science (2013), http://www.sciencemag.org/content/early/2013/02/20/science.1228729.

815.

Cronin, T. M. et al., A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes. Quaternary Science Reviews (2013), http://www.sciencedirect.com/science/article/pii/S0277379112005380.

816.

McNeil, B. I. & Matear, R. J., The non-steady state oceanic CO2 signal: its importance, magnitude and a novel way to detect it. Biogeosciences 10, 2219-2228 (2013), http://www.biogeosciences.net/10/2219/2013/bg-10-2219-2013.html.

817.

Ahn, J., Brook, E. J., Schmittner, A. & Kreutz, K., Abrupt change in atmospheric CO2 during the last ice age. Geophysical Research Letters 39 (2012), http://onlinelibrary.wiley.com/doi/10.1029/2012GL053018/abstract.

818.

The Global Carbon Project, Global Carbon Budget (2012), http://www.globalcarbonproject.org/carbonbudget/index.htm.

819.

Summerhayes, C., Dragon's den - CO2: volcanic or anthropogenic? (2011), http://www.geolsoc.org.uk/en/Geoscientist/​Previous%20issues%20-%2002%20Oct%2020h44m/​2011%20Issues/September%202011/Dragons%20den%20-%20CO2%20​volcanic%20or%20anthropogenic.

820.

USGS, Volcanic Gases and Climate Change Overview (2012), http://volcanoes.usgs.gov/hazards/gas/climate.php.

821.

Frame, D. J. & Stone, D. A., Assessment of the first consensus prediction on climate change. Nature Climate Change (2012), http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate1763.html.

822.

PALAEOSENS Project Members, Making sense of palaeoclimate sensitivity. Nature 491, 683–691 (2012), http://www.nature.com/nature/journal/v491/n7426/full/nature11574.html.

823.

NASA, Unresolved questions about Earth's climate, http://climate.nasa.gov/uncertainties.

824.

Ravishankara, A. R., Water Vapor in the Lower Stratosphere. Science 337, 809-810 (2012), http://www.sciencemag.org/content/337/6096/809.summary.

825.

Lindzen, R. S., Chou, M. D. & Hou, A. Y., Does the Earth Have an Adaptive Infrared Iris? Bulletin of the American Meteorological Society 82, 417–432 (2001), http://journals.ametsoc.org/doi/abs/10.1175/​1520-0477%282001%29082%3C0417%3ADTEHAA%3E2.3.CO%3B2.

826.

Aumann, H. H., Ruzmaikin, A. & Behrangi, A., On the Surface Temperature Sensitivity of the Reflected Shortwave, Outgoing Longwave, and Net Incident Radiation. Journal of Climate 25 (2012), http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-11-00607.1.

827.

CICERO, Unpublished estimates of climate sensitivity (2013), http://www.cicero.uio.no/webnews/index_e.aspx?id=11856.

828.

Skinner, L., A Long View on Climate Sensitivity. Science 337, 917-919 (2012), http://www.sciencemag.org/content/337/6097/917.summary.

829.

Lunt, D. J. et al., Earth system sensitivity inferred from Pliocene modelling and data. Nature Geoscience 3, 60 - 64 (2009), http://www.nature.com/ngeo/journal/v3/n1/abs/ngeo706.html.

830.

Park, J. & Royer, D. L., Geologic constraints on the glacial amplification of Phanerozoic climate sensitivity. American Journal of Science 311, 1-26 (2011), http://www.ajsonline.org/content/311/1/1.abstract.

831.

Previdi, M. et al., Climate sensitivity in the Anthropocene. Quarterly Journal of the Royal Meteorological Society 139, 1121–1131 (2013), http://onlinelibrary.wiley.com/doi/10.1002/qj.2165/full.

832.

Bond, T. C. et al., Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres (2013), http://onlinelibrary.wiley.com/doi/10.1002/jgrd.50171/abstract.

833.

Fischer, D. et al., Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nature Geoscience 6, 647–651 (2013), http://www.nature.com/ngeo/journal/v6/n8/full/ngeo1886.html.

834.

EPA, Methane Emissions (2014), http://epa.gov/climatechange/ghgemissions/gases/ch4.html.

835.

IPCC, 2001 , http://www.ipcc.ch/ipccreports/tar/wg3/index.php?idp=125.

836.

Wright, J. D. & Schaller, M. F., Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum. PNAS (2013), http://www.pnas.org/content/early/2013/09/13/1309188110.abstract.html.

837.

Cui, Y. et al., Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. Nature Geoscience 4, 481–485 (2012), http://www.nature.com/ngeo/journal/v4/n7/full/ngeo1179.html.

838.

Grant, K. M. et al., Rapid coupling between ice volume and polar temperature over the past 150,000years. Nature 491, 744–747 (2012), http://www.nature.com/nature/journal/v491/n7426/full/nature11593.html.

839.

USGS, Sea-Level Rise (2013), http://wh.er.usgs.gov/slr/sealevelrise.html.

840.

USGS, National Assessment of Coastal Vulnerability to Sea-Level Rise: Preliminary Results for the U.S. Pacific Coast (2013), http://pubs.usgs.gov/of/2000/of00-178/textonly/textcaption.html.

841.

Climate Central, Surging Seas, http://sealevel.climatecentral.org/surgingseas/place/cities/NY/​New_York#show=cities&center=10/40.6979/-73.9797&surge=6.

842.

FEMA, FEMA MOTF-Hurricane Sandy Impact Analysis (2012), http://www.arcgis.com/home/item.html?id=307dd522499d4a44a33d7296a5da5ea0.

843.

Willis, J. K. & Church, J. A., Regional Sea-Level Projection. Science 336, 550-551 (2012), http://www.sciencemag.org/content/336/6081/550.summary.

844.

Schiermeier, Q., Wild weather can send greenhouse gases spiralling (2013), http://www.nature.com/news/wild-weather-can-send-​greenhouse-gases-spiralling-1.12764.

845.

EPA, Climate Change Facts: Answers to Common Questions (2012), http://www.epa.gov/climatechange/facts.html.

846.

Voss, K. A. et al., Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resources Research 49 (2013), http://onlinelibrary.wiley.com/doi/10.1002/wrcr.20078/full.

847.

van Hooidonk, R., Maynard, J. A. & Planes, S., Temporary refugia for coral reefs in a warming world. Nature Climate Change 3 (2013), http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate1829.html.

848.

Cheung, W. W. et al., Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Climate Change 3, 254–258 (2012), http://www.nature.com/nclimate/journal/v3/n3/full/nclimate1691.html.

849.

Carrington, D., Fish to shrink by up to a quarter due to climate change, study reveals (2012), http://www.guardian.co.uk/environment/2012/sep/30/fish-shrink-climate-change.

850.

Grinsted, A., Moore, J. C. & Jevrejeva, S., Homogeneous record of Atlantic hurricane surge threat since 1923. PNAS 109, 19601-19605 (2012), http://www.pnas.org/content/109/48/19601.

851.

Holland, G. J., Hurricanes and rising global temperatures. PNAS 109, 19601-19605 (2012), http://www.pnas.org/content/109/48/19601.

852.

Schuur, E. A. G. & Abbott, B., Climate change: High risk of permafrost thaw. Nature 480, 32–33 (2011), http://www.nature.com/nature/journal/v480/n7375/full/480032a.html.

853.

Anthony, K. M. W., Anthony, P., Grosse, G. & Chanton, J., Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nature Geoscience 5, 419–426 (2012), http://www.nature.com/ngeo/journal/v5/n6/full/ngeo1480.html.

854.

Berkeley Earth, Graphics: Global Warming and Permafrost Melt (2013), http://berkeleyearth.org/graphics#permafrost-melt-since-1900.

855.

Earth: The Biography (Earth: The Power of the Planet), film produced by BBC, UK (distributed by BBC; 2008), DVD.

856.

Shakhova, N. et al., Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature 7 (2013), http://www.nature.com/ngeo/journal/v7/n1/full/ngeo2007.html.

857.

Phrampus, B. J. & Hornbach, M. J., Recent changes to the Gulf Stream causing widespread gas hydrate destabilization. Nature 490, 527–530 (2012), http://www.nature.com/nature/journal/v490/n7421/full/nature11528.html.

858.

Energy Star, Save Energy at Home, http://www.energystar.gov/index.cfm?c=products.pr_save_energy_at_home.

859.

McKibben, B., Eaarth (St. Martins, 2011), http://us.macmillan.com/eaarth/BillMcKibben.

860.

The Economist, The East is grey, in The Economist (The Economist, 2013) , http://www.economist.com/news/briefing/21583245-china-worlds-worst-polluter-​largest-investor-green-energy-its-rise-will-have.

861.

IPCC Working Group III, 2011 , http://srren.ipcc-wg3.de/report.

862.

Muller, R., Memo, 2013 , http://static.berkeleyearth.org/memos/fugitive-methane-and-greenhouse-warming.pdf.

863.

EPA, Air Emissions (2013), http://www.epa.gov/cleanenergy/energy-and-you/affect/air-emissions.html.

864.

The Royal Society, 2009 , http://royalsociety.org/policy/publications/2009/geoengineering-climate/.

865.

Herper, M., The Truly Staggering Cost Of Inventing New Drugs (2012), http://www.forbes.com/sites/matthewherper/2012/02/10/​the-truly-staggering-cost-of-inventing-new-drugs/.

866.

Fintel, B., Samaras, A. T. & Carias, E., THE THALIDOMIDE TRAGEDY: LESSONS FOR DRUG SAFETY AND REGULATION (2009), http://scienceinsociety.northwestern.edu/content/articles/​2009/research-digest/thalidomide/title-tba.

867.

Alterskjær, K., Kristjánsson, J. E. & Seland, Ø., Sensitivity to deliberate sea salt seeding of marine clouds – observations and model simulations. Atmospheric Chemistry and Physics 12, 2795-2807 (2012), http://www.atmos-chem-phys.net/12/2795/2012/acp-12-2795-2012.html.

868.

Smetacek, V. et al., Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487, 313–319 (2012), http://www.nature.com/nature/journal/v487/n7407/abs/nature11229.html.

869.

International Energy Agency, 2009 , http://www.iea.org/publications/freepublications/publication/name,3847,en.html.

870.

Gunther, M., Direct air capture of CO2 is becoming a business, for better or worse (2012), http://www.marcgunther.com/direct-air-capture-of-co2-is-​becoming-a-business-for-better-or-worse/.

871.

Pongratz, J., Climate science: Plant a tree, but tend it well (2013), http://www.nature.com/nature/journal/v498/n7452/full/498047a.html.

872.

Arora, V. K. & Montenegro, A., Small temperature benefits provided by realistic afforestation efforts. Nature Geoscience 4, 514–518 (2011), http://www.nature.com/ngeo/journal/v4/n8/full/ngeo1182.html.

873.

FAO, Turning the tide on desertification in Africa (2011), http://www.fao.org/news/story/en/item/80060/icode/.

874.

Glaeser, E., New York Can Protect Itself Without Federal Aid (2012), http://www.bloomberg.com/news/2012-11-27/new-york-can-protect-itself-without-federal-aid.html.

875.

Higgins, A., Lessons for U.S. From a Flood-Prone Land (2012), http://www.nytimes.com/2012/11/15/world/europe/​netherlands-sets-model-of-flood-prevention.html.

876.

Panel on Adapting to the Impacts of Climate Change, 2010 , http://nas-sites.org/americasclimatechoices/sample-page/panel-reports/​panel-on-adapting-to-the-impacts-of-climate-change/.

877.

Hallegatte, S., Green, C., Nicholls, R. J. & Corfee-Morlot, J., Future flood losses in major coastal cities. Nature Climate Change 3 (2013), http://www.nature.com/nclimate/journal/v3/n9/full/nclimate1979.html.

878.

The Economist, Fleeing the storms (2012), http://www.economist.com/blogs/freeexchange/2012/12/global-warming.

879.

The Economist, How to deal with a falling population (2007), http://www.economist.com/node/9545933.

880.

Hu, A., Xu, Y., Tebaldi, C., Washington, W. M. & Ramanathan, V., Mitigation of short-lived climate pollutants slows sea-level rise. Nature Climate Science 3, 730–734 (2013), http://www.nature.com/nclimate/journal/v3/n8/full/nclimate1869.html.

881.

BBC, Global resources stock check (2012), http://www.bbc.com/future/story/20120618-global-resources-stock-check.

882.

Douthat, R., Marco Rubio and the Age of the Earth (2012), http://douthat.blogs.nytimes.com/2012/11/19/​marco-rubio-and-the-age-of-the-earth/.

883.

Cronin, M., Scientific Literacy? Politicians Make Embarrassing Gaffes About Science, Technology (PHOTOS) (2012), http://www.huffingtonpost.com/2012/09/03/​scientific-literacy-politicians-gaffes_n_1825314.html.

884.

Pritchard, C., L'Aquila ruling: Should scientists stop giving advice? (2012), http://www.bbc.co.uk/news/magazine-20097554.

885.

Cass, M. H., We Do Not Inherit the Earth from Our Ancestors; We Borrow It from Our Children (2013), http://quoteinvestigator.com/2013/01/22/borrow-earth/.

x